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Abstract

Novel technologies, such as camera traps, have expanded the

opportunities for species detection, especially for rare species.

Corresponding changes in data processing must occur to

handle the large volume of data gathered from technology like

camera traps. Automated image data processing, usually by

running images through different types of computer algo-

rithms, is an overarching goal to reduce the number of images

that researchers must manually review. However, differences

in camera trap setups and species characteristics can make

automatic processing a challenge. Here, we evaluated the

detection accuracy and efficiency of a time‐lapse triggered

camera trapping technique combined with a pixel change

detection algorithm as part of a monitoring program for a

translocated population of the rare and federally threatened

Louisiana Pinesnake (Pituophis ruthveni). We paired 5 cameras

with automated pit tag readers to collect observations of

P. ruthveni. We evaluated an image dataset of 1,500,187

images, collected over 7 months, both manually (i.e., research-

ers looking at each individual picture to determine snake

presence) and automatically using a change detection algo-

rithm. There were 18 P. ruthveni observations recorded by the

tag readers, 7 of which occurred while a paired camera was not
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operational. Ten of the tag reader P. ruthveni observations

were captured by the paired camera trap, with an additional

P. ruthveni observation from a paired camera trap not recorded

by the tag reader. There were 132 snake observations of

13 additional species and 18 observations of unknown snakes

from the camera traps. The algorithm reduced the number of

images reviewers evaluated by an average of 78.5% per

camera (range = 37.3–98.7%) but had a 54.5% success rate at

detecting observations of P. ruthveni (47.1% for individual

images), and a slightly lower 48.9% success rate detecting

other large snakes. Large snakes were 4 times more likely to be

flagged by the algorithm than small snakes. Our time‐lapse

triggered camera trapping technique performed well with

respect to P. ruthveni detection accuracy, compared to the

tag readers. However, further research is needed to improve

quality assurances of camera trap image filtering and object

recognition algorithms across different sites or environments.

K E YWORD S

camera trap, change detection algorithm, conservation monitoring,
detection, Louisiana Pinesnake, Pituophis ruthveni

Wildlife monitoring is evolving quickly as novel technologies (e.g., automated acoustic recorders, DNA barcoding,

camera trapping) expand the possibilities for species detection (Pimm et al. 2015, Sugai et al. 2019). For rare

species, updated technologies are improving detection and refining inferences of absence (Glover‐Kapfer et al.

2019, Crawford et al. 2020, Meek et al. 2020), which are both critical to effective population monitoring,

management, and conservation (Nichols and Williams 2006). Failing to detect a species when present, a false‐

negative, is a common problem for rare species comprised of small and often declining populations with limited

sampling resources available (Tyre et al. 2003). In such circumstances, separating robust inferences of absence from

inadequate sampling requires knowledge of detection probabilities, which may be prohibitively expensive to

estimate in rare species, especially when such species are cryptic, occupy complex habitats, and exhibit secretive

behaviors (McDonald 2004, Steen 2010, Durso and Seigel 2015, Crawford et al. 2020).

To address species detection problems, several camera trapping techniques have been incorporated into drift‐

fence sampling arrays to help increase detection and reduce costs of monitoring snakes and other reptiles. Reptiles

provide challenges for camera traps as they are ectothermic and often match the background surface temperature

which may not trigger passive infrared sensors (PIR) and are often small and may not trigger active infrared sensors

(AIR; Welbourne 2013). Nevertheless, some studies have tried to enhance the PIR, which detects differences in

surface temperatures between objects (Welbourne et al. 2017), by creating trapping stations designed to increase

the likelihood of detecting reptiles (e.g., cork board ground cover under cameras, Welbourne 2013, Welbourne et al.

2020; bucket trap holes aligned with camera PIR, Martin et al. 2017). Related approaches have applied external near

infrared beams at crossing stations that trigger the camera when broken by moving reptiles (Hobbs and Brehme

2017). Other techniques have applied time‐lapse settings on camera traps mounted facing the ground at drift‐fence

intersections to increase detections (Neuharth et al. 2020) and reduce resource demands of long‐term or

distribution‐wide monitoring for rare and secretive snake species (Adams et al. 2017, Anderson et al. 2020).
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A common goal of both PIR and time‐lapse triggered camera trapping techniques is to maximize the number

of true positive detections and minimize the number of false negative detections (i.e., misses) for the target

species. A criticism of PIR techniques is that success is dependent on camera sensor performance, which has

been shown to be impacted by a variety of factors, including vegetation density, background surface

temperature, their combination (i.e., dappled shade/sun), relative humidity, target animal body size, and

temperature and distance from camera (Glover‐Kapfer et al. 2019). In addition, research has shown the heat‐in‐

motion functions used to trigger detections in PIR techniques can be as variable within camera trap brands or

models as between them (Meek et al. 2014, 2015, 2020; Falzon et al. 2019). Product variation is thought to be

market driven as camera trap manufacturers typically focus on satisfying needs of the hunting community, which

typically involve animals with large heat signatures that can be detected with cheaper, lower quality components

and thus reduce product costs for consumers (Meek et al. 2020). Wildlife research markets will likely never be as

large as the hunter market, so manufacturers may not be incentivized to address the PIR factors described above

that increase uncertainty in estimates of rare species detection, and by extension, inferences of absence.

For time‐lapse triggered camera trapping techniques, the goal of maximizing the number of target species

detections and minimizing the number of empty images (i.e., images without target species) can be accomplished

without physical camera alteration by decreasing the time‐lapse interval, thus taking pictures more frequently,

assuming the target species is present. Decreasing the time‐lapse interval to increase detections exacerbates a major

criticism of the time‐lapse technique, which is that thousands to millions of images are generated in the dataset and

must be evaluated for target species, a time‐consuming manual task in the absence of automation. Though accurate,

this criticism is not unique to time‐lapse techniques, as PIR techniques can generate empty images via factors

contributing to poor sensor performance described above. Thus, regardless of the camera trapping technique

employed, computational solutions working first on reducing the number of images to be evaluated and second on

target species identification will be a huge benefit to practitioners globally (Meek et al. 2020).

Recently, there have been a variety of developments in automated image processing, and each has specific

limitations depending on target species and image capture technique (Young et al. 2018, Meek et al. 2020). For

example, several convolutional neural networking algorithms (CNN) have been designed to process images, but many

of them are based on large mammals surveyed with PIR techniques to reduce the number of false positives prior to

analysis (Tack et al. 2016, Villa et al. 2017, Norouzzadeh et al. 2018, Tabak et al. 2018, Yousif et al. 2019).

Fundamental to the neural networking approach was the availability of hundreds to thousands of in situ target species

images from a wide variety of habitats or backgrounds used to train the algorithms (Young et al. 2018, Meek et al.

2020). The minimum number of training images required to ensure optimal model accuracy across all datasets varies

depending on species and habitat characteristics (Shahinfar et al. 2020), and the minimum number of training images

available for rare species, especially rare snake species, typically do not meet training image number requirements.

An alternative to CNN algorithms is pixel change detection algorithms, which compare images on a pixel‐by‐

pixel basis to detect changes (Ílsever and Ünsalan 2012, Hussain et al. 2013). Paired with time‐lapse triggered

camera trapping techniques, pixel change detection algorithms may provide an opportunity to increase

detections of rare snake species and reduce the number of false positive detections. Given that pictures taken

closer together in time are more similar, camera traps set with short time‐lapse intervals will take more similar

pictures thus increasing detections of target species when present and increasing the probability that an arrival

of the target species will provide a large enough change in subsequent images to be detected with pixel change

algorithms. Here, we evaluate the detection accuracy and efficiency of a time‐lapse triggered camera trapping

technique paired with a pixel change detection algorithm in an on‐going monitoring program for a translocated

population of the federally threatened Louisiana Pinesnake (Pituophis ruthveni; U.S. Fish and Wildlife Service

2016, 2018). Specifically, we evaluate (1) the number of snakes captured on camera vs. by automated pit tag

readers, (2) the number of snake images captured by the change detection algorithm vs. manual researcher

review, and (3) characteristics of the images that may make detection by the change detection algorithm more or

less likely.

SNAKE DETECTION USING CAMERA TRAPS | 3 of 16
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STUDY AREA

Due to concerns about perceived population declines, various zoos established captive populations of P. ruthveni in

1988, and subsequently, a reintroduction effort was initiated in 2010 on the Catahoula Ranger District of the

Kisatchie National Forest, Louisiana (~4,000 ha). The Catahoula Ranger District is within the South Central Plains

ecoregion characterized by upland forest containing mixed pines, predominately longleaf pine (Pinus palustris), and

sandy soils (Daigle et al. 2006). Forest management on the site includes sporadic thinning operations (every 20

years) and frequent prescribed burning (every 4 years) which helps maintain a generally open canopy, low midstory

density, and a well‐developed herbaceous understory. The climate is considered humid subtropical, consisting of

long, hot summers and short, mild winters. Total precipitation during the period of our study (28 March–15 October

2019) was 101 cm. The average minimum and maximum temperatures during the spring (March–May) were 13.1

and 25.1°C respectively, summer (June–August) were 22.2 and 32.9°C respectively, and fall (September–October)

were 19.4 and 31.9°C respectively.

METHODS

Study design

Between 2010 and 2019, 123 uniquely pit‐tagged P. ruthveni individuals were released into the translocation area

and monitored using automated pit tag readers buried at the intersection of cross‐shaped drift fences made of

6.4 mm mesh hardware cloth (15 m long x 61 cm tall). By design, the tag reader monitoring system recorded the true

number of pit‐tagged P. ruthveni drift fence crossings and the individual pit‐tag number, therefore it provided the

opportunity to evaluate P. ruthveni detection accuracy and efficiency using both the time‐lapse triggered camera

trapping technique and pixel change detection algorithm. We mounted a camera trap 2m above 5 different tag

readers (pairwise distances between tag readers averaged 831 ± 398m [SD], range = 284–1,630m). Due to the size

of the site and the home range size of P. ruthveni, the traps and cameras are not considered independent, meaning

individual P. ruthveni could encounter multiple traps in the course of their normal movements.

Following the procedures of Neuharth et al. (2020), we mounted cameras facing the ground at the drift fence

intersection, and we programmed them to take an image every 30 seconds with a time‐lapse trigger. Since

P. ruthveni are primarily diurnal snakes (Himes et al. 2006), we ran cameras from 0530 to 2115 hours daily.

We deployed them on 28 March 2019 and removed them for the winter between 28 September and 15 October

2019, a typical monitoring season for P. ruthveni. We replaced memory cards and batteries approximately every

3 weeks and we backed up images from memory cards onto external hard drives prior to analysis.

Data collection

We evaluated the full image dataset both manually (i.e., researchers looking at each individual picture to determine

if a snake was present) and using a pixel change detection algorithm. First, we evaluated all images manually from

the 5 cameras using multiple reviewers, but only a single reviewer per image in a blind design. We reviewed the

images using RECONYX MapView Professional Software v.3.7.2.2 (https://www.reconyx.com/software/mapview)

which plays images as a slideshow at changeable speeds. For images containing snakes, we recorded the species,

date, and time, along with qualitative information to help us evaluate the accuracy and efficiency of the algorithm in

detecting snakes, including P. ruthveni. Specific information included relative snake size (estimated categories:

small < 33 cm, 33 <medium < 66 cm, and large > 66 cm), approximate amount of snake showing in the image

(little = less than 1/3; some = 1/3 to 2/3, most =more than 2/3), and whether half or more of the showing length of
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the snake was covered by vegetation or the drift fences. We also included an unknown snake category for images

where species identification was not possible, often due to only part of the snake being captured on camera or low‐

light images where identifying characteristics were not visible. When the same snake stayed in the frame for

multiple consecutive images, we considered those a single observation of an individual snake. One subject matter

expert verified all observations of the snake species in each image, along with the relative snake size. Finally, we

also examined the camera images encompassing the times a pit‐tagged P. ruthveniwas detected by the tag reader to

ensure that all detections of the target species were included in the snake detection database.

Change detection algorithm

To reduce the number of empty images a researcher needed to review, we used a pixel‐based change detection

algorithm (Appendix A) to evaluate the difference between consecutive images and retain only images where the

change met a specified threshold. The cameras used automatically adjusted ISO and shutter speed to approximate

the image to that perceived by the human eye. As such, and because of the variability of lighting in the environment,

the images were not adjusted to account for ISO and shutter speed, meaning the images used were normalized for

visibility and not absolute measures of color and light.

For each of the 5 cameras, we compared reference images of P. ruthveni (Figure 1A), identified before image

review from the tag reader records, from that camera to a set of snake‐free images adjacent in time to create

F IGURE 1 (A) Reference image of Louisiana Pinesnake (Pituophis ruthveni), used to determine the threshold of
pixel numbers used in the change detection algorithm. Example images of (B) small, (C) medium, and (D) large
coachwhip (Masticophis flagellum). These are also examples of snakes where most of the snake is shown in the
picture, and where snakes are at least half covered (B & D) or not (A & C). All images were collected from the
Kisatchie National Forest in Louisiana, USA during 28 March–15 October 2019.

SNAKE DETECTION USING CAMERA TRAPS | 5 of 16
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difference thresholds in the extent (i.e., number of contiguous changed pixels) and brightness (i.e., per‐pixel

mathematical difference in grey‐scale value from one image to the next) of pixel change between the snake and

snake‐free images.

First, to reduce processing time we converted each image to grayscale by averaging the pixel values between

the RGB (Red, Green, Blue) layers for each pixel. Then, we created difference images by taking the absolute value of

the difference of 2 images adjacent in time for both the snake reference images (i.e., 2 consecutive images, the

reference image and the one immediately preceding it) and for random consecutive empty images for each camera.

To determine the optimal brightness band (i.e., the band of grayscale brightness that may provide the optimal

indicator of movement by the target organism), we partitioned the pixel values into 11 categories: true zero and by

0.1 intervals (i.e., 0.0 to 0.1, 0.1 to 0.2, etc.). Then we calculated the number of pixels in each category and

compared the snake reference difference image with the random empty difference images to determine which

category had the greatest difference in pixels between the 2 types of difference images. From the sample of

reference images, we determined brightness values in the 0.1–0.2 range were optimal for the detection of

P. ruthveni (i.e., had the largest difference compared to the empty images). We used the sum of the changes of pixels

falling within the optimal brightness band as thresholds to determine which difference images were retained as part

of the algorithm image set. Thresholds were specific to the individual cameras, based on the reference images

retained from each camera. Finally, we ran the folders of images through the change detection algorithm and any

image that met or exceeded the threshold for change was copied to a new folder for manual image review. All

image processing was done in R v. 3.6.1 (R Core Team 2019) using package jpeg (Urbanek 2019).

Data analysis

We manually evaluated all images flagged by the algorithm. We confirmed each image was evaluated by a reviewer

who had not previously seen that batch of images (i.e., providing 2 independent reviews of the images). We then

coded each snake image as being found by the first reviewer only (in the full image set), by the second reviewer only

(in the algorithm‐reduced image set), or by both researchers (in both image sets). Using this coding system, we

verified whether all the snake images found by the first reviewers were present or not present in the algorithm‐

reduced image set, classifying each image as true positive (i.e., there was a snake in the image flagged by the

algorithm) or false negative (i.e., there was a snake in an image and the algorithm did not flag that image). We then

calculated the number of algorithm false positive detections (i.e., an image flagged by the algorithm not containing

any snake) and true negative detections (i.e., an image with no snake not flagged by the algorithm) by comparing

images flagged by the algorithm with snake images found by the second reviewers.

Using logistic regression, we tested for the effects of relative snake size, the amount of snake showing, or

whether there was cover (i.e., vegetation or fencing) obscuring the snake on the number of true positive snake

detections by the algorithm (i.e., successes) compared to snake detections manually detected only, or false

negatives (i.e., algorithm misses). We evaluated a global additive model (containing all 3 variables) and 5 additional

models with different variable combinations determined a priori. We ranked the models and selected the best

model using corrected Akaike's Information Criteria (AICc), where ΔAICc < 2.0 indicates the best model (Burnham

and Anderson 2002). We set statistical significance at α = 0.05.

RESULTS

Over the 7 month period the cameras were deployed, the 5 camera traps ran for 764 trap days in total (x̄ = 152.8,

SD = 12.3, range = 134–171 trap days per camera). We had a malfunction in 1 of the 5 cameras (C7), so it was not

active from mid‐May to early July 2019. Reviewers evaluated a total of 1,500,187 images and we detected 2,425

6 of 16 | WALKUP ET AL.

 23285540, 0, D
ow

nloaded from
 https://w

ildlife.onlinelibrary.w
iley.com

/doi/10.1002/w
sb.1408, W

iley O
nline L

ibrary on [14/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



images of 161 individual snake observations comprising 14 identifiable species (Figure 1, Table 1, S1, available in

Supporting Information). Individual snake observations consisted of between 1 and 1,779 consecutive images of the

individual snake (x̄ = 15, SD = 140, median = 2). Almost 75% of the images captured were from a single Agkistrodon

contortrix (Eastern Copperhead) present under the camera for approximately a full day (1,779 images), which we

considered an outlier and removed from our regression analysis, leaving us with 646 images of 160 snake

observations (x̄ = 4, SD = 7, median = 2, range = 1–68 images per individual observation).

Of those 160 snake observations, we detected 11 (17 images) P. ruthveni observations (Table 1, Figure 2).

We detected 18 P. ruthveni observations with the 5 tag readers from 28 March 2019 to 15 October 2019. Seven

of the 18 observations were not captured on camera because of the malfunctioning camera (C7) during the

middle of the study, but the 11 remaining tag reader P. ruthveni observations were captured when all 5 cameras

were functional. However, one of the tag reader P. ruthveni observations also captured by the cameras was

missed in the manual review of the images, because the image captured only a small fraction of the snake's tail.

As a result, that image was not counted as a successful camera trap observation. Only one camera trap

observation (2 images) was not also detected by the tag reader. In those 2 images, the individual P. ruthveni

reached the drift fence and then turned towards the distal end of the drift fence rather than the center where

the tag reader was located. Thus, both camera traps and tag readers captured the same 10 P. ruthveni

observations and a single unique observation each.

For the 10 overlapping observations, the tag readers identified 4 unique individuals. Two of the individual

P. ruthveni were detected once each at one camera (C12). The other 2 individuals were detected at 2 cameras each,

with no overlap between the camera pairs: C7 (twice) and C9 (once) for one individual and C11 and C12 for the

TABLE 1 Number of observations and number of images (in parentheses) for each relative size category
(small ≈ <33 cm, medium ≈ 33–66 cm, and large ≈ >66 cm) and total, for the 14 snake species identified, along with
an unknown snake group that contained observations of snakes where the images were not identifiable. Images
captured by camera traps in the Kisatchie National Forest, Louisiana, USA, during 28 March–15 October 2019.

Scientific name Common name Small Medium Large Total

Agkistrodon contortrix Eastern Copperhead ‐ 12 (1889)a ‐ 12 (1889)a

Cemophora coccinea Scarletsnake 3 (12) ‐ ‐ 3 (12)

Coluber constrictor North American Racer 1 (1) 5 (16) 12 (16) 18 (33)

Crotalus horridus Timber Rattlesnake ‐ ‐ 1 (14) 1 (14)

Lampropeltis getula Eastern Kingsnake ‐ ‐ 2 (10) 2 (10)

Masticophis flagellum Coachwhip 2 (4) 2 (16) 26 (36) 30 (56)

Micrurus tener Texas Coralsnake ‐ 5 (15) 1 (1) 6 (16)

Opheodrys aestivus Rough Greensnake 1 (16) 2 (7) ‐ 3 (23)

Pantherophis obsoletus Western Ratsnake ‐ 1 (10) 2 (2) 3 (12)

Pantherophis slowinskii Slowinski's Cornsnake ‐ 2 (9) 3 (5) 5 (14)

Pituophis ruthveni Louisiana Pinesnake ‐ ‐ 11 (17) 11 (17)

Sistrurus miliarius Pygmy Rattlesnake 1 (1) ‐ ‐ 1 (1)

Storeria dekayi Dekay's Brownsnake 1 (6) ‐ 1 (6)

Thamnophis proximus Western Ribbonsnake 11 (79) 36 (195) ‐ 47 (274)

Unknown snake ‐ 9 (17) 7 (28) 2 (3) 18 (48)

aIncludes 1 observation (1779 images) of an eastern copperhead (Agkistrodon contortrix) where the snake coiled under the
camera for a day. This observation and images were removed as an outlier in the binomial logistic models.
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other individual (twice at C11, and thrice at C12; Figure 3). All individual P. ruthveni detected by the cameras were

large adults and distributed almost evenly in the amount of snake showing in the images (Table S2, available in

Supporting Information), while 11 of the 17 images (64.7%) had the P. ruthveni at least half covered by vegetation or

fencing.

Over the 764 trap days, we recorded one P. ruthveni observation per 69.5 camera trap days at the release site.

For individual cameras, P. ruthveni detections per trap day averaged one observation per 100.4 ± 54.5 (SD) camera

trap days (range = 29.2–171 camera trap days). At the site, there were zero days to first detection; the initial

P. ruthveni detection occurred on the first day the camera traps were deployed. However, by camera, the trap days

to first P. ruthveni detection ranged 0 to 153 (x̄ = 79.2, SD = 58.8 camera trap days).

We were also interested in determining how generalizable reference images were to detect other similarly

sized snakes, i.e., the large snakes from the relative snake size category. We made 47 observations of 7 species

of large snakes (mean = 1.8, SD = 2.1, n = 84 images, range = 1–14 images per observation), excluding P. ruthveni,

along with 2 unidentified large snake observations (3 images; Tables 1, S1 and S2). Some of the common snake

species (e.g., North American Racers [Coluber constrictor] and Coachwhips [Masticophis flagellum]) had

representative individuals for each of the 3 size classes. For the large snakes, there were fewer images with

little of the snake showing in the images (19.5%), but the rest were almost evenly distributed between some of

the snake showing (36.8%) and most of the snake showing (43.7%; Figure 1B–D, Table S3, available in

Supporting Information). Of the 84 large snake observations, 63 (75%) had snakes at least half covered by

vegetation or fencing.

F IGURE 2 Algorithm success at locating snakes and reducing effort for each camera. (A) The number of
observations collected by each tag reader and camera (i.e., C4, C7, C9, C11, and C12, along the x‐axis) and flagged
by the algorithm for Louisiana Pinesnakes (Pituophis ruthveni). The percentages in the top row are the number of
P. ruthveni observations collected by the tag reader divided by the number of observations collected by the camera
and in the bottom row are the number of observations returned by the algorithm divided by the number of
observations collected by the camera. *Camera 7 was not functioning during 7 of the 9 P. ruthveni tag reader
observations but captured both observations for which it was available. (B) The number of observations of other
large snakes collected by each camera and flagged by the algorithm. The percentages are the number of
observations returned by the algorithm divided by the number of observations collected by the camera.
(C) Algorithm success in effort reductions (i.e., reducing the number of images reviewers evaluate manually). The
percentages are the number of images returned by the algorithm divided by the total number of images collected by
the camera. All images were collected from the Kisatchie National Forest in Louisiana, USA during 28 March–15
October 2019.
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Change detection algorithm

The pixel changes between consecutive empty and reference P. ruthveni images varied greatly between the

different cameras. The threshold for the difference images ranged between 26,383 and 2,800,000 pixels (x̄=

644,112, SD = 1,211,218 pixels) among the 5 cameras. The pixel counts are the total number of pixels within the

(0.1–0.2] brightness band in the whole difference image that was used as the threshold to retain images for manual

review. The algorithm did not retain any images falling under the thresholds as they were determined to not have a

significant change based on the reference image for each camera.

The algorithm reduced the number of images reviewers evaluated by an average of 78.5% per camera

(range = 37.3–98.7%) but had a 54.5% success rate at detecting observations of P. ruthveni (47.1% for individual

images), and a slightly lower 48.9% success rate detecting other large snake observations and images (Figure 2,

Table S1). The number of false positives averaged 64,384 images per camera (without the A. contortrix: x̄ = 64,387

false positive images per camera), however, false positive average was skewed high by the very low percent

reduction in algorithm images for tag reader and camera C12 (i.e., only 37.3% reduction; Figure 4, Table S1). The

number of false negatives averaged 453 images per camera, but again the false negative average was skewed by a

single A. contortrix present for an entire day (1,779 images) on camera C7 (without the A. contortrix: x̄ = 101 false

negative images per camera, Figure 4). For P. ruthveni, 8 images (6 observations) were classified as true positives

(flagged by the algorithm), while 9 images (5 observations) were false negatives (missed by the algorithm) (Figure 4,

Table S1). One of those false negatives included one of the reference images used by the change detection

algorithm to determine the pixel change threshold for flagging images.

F IGURE 3 Louisiana Pinesnake (Pituophis ruthveni) No. 21801 captured at multiple cameras: (A) C11 on 17 May
2019, (B) C12 on 6 July 2019, (C) C12 on 31 August 2019, and (D) C11 on 5 September 2019. All images were
collected from the Kisatchie National Forest in Louisiana, USA during 28 March–15 October 2019.

SNAKE DETECTION USING CAMERA TRAPS | 9 of 16

 23285540, 0, D
ow

nloaded from
 https://w

ildlife.onlinelibrary.w
iley.com

/doi/10.1002/w
sb.1408, W

iley O
nline L

ibrary on [14/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The single top logistic model (ΔAICc < 2) was the full additive model, comparing the effects of relative size,

amount of snake showing, and at least half covered (no or yes), accounting for 0.81 of the AICc weight (Table 2).

The odds ratio for relative size of the snake indicated large snakes were approximately 4 times more likely to be

flagged by the algorithm than small snakes (Table 3). Additionally, snakes with approximately some, or most of

their body length showing in the images were 2 and 1.3 times, respectively, more likely to be flagged by the

algorithm than snakes with little of their body length showing (Table 3). Finally, counterintuitively, snakes at

least half covered by vegetation or fencing in the images were 1.8 times more likely to be flagged by the

algorithm (Table 3).

F IGURE 4 The number of images in each picture category for each camera (not including the Eastern
Copperhead [Agkistrodon contortix] at C7). Our goals were to maximize true positives (algorithm flagged an image
containing a snake) and true negatives (algorithm did not flag the image and there was no snake in it), while
minimizing false negatives (algorithm did not flag the image containing a snake) and false positives (algorithm
flagged an image and there was no snake in it). The true positives and false negatives (top row) reflect snake
presence in images, while true negatives and false positives (bottom row) reflect effort reduction by the algorithm
for manual review. All images were collected from the Kisatchie National Forest in Louisiana, USA during
28 March–15 October 2019.
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DISCUSSION

Our time‐lapse triggered camera trapping technique performed well with respect to P. ruthveni detection accuracy.

All but one of the pit‐tagged P. ruthveni crossings were detected, and the single miss occurred because the image

included only a small portion of the snake's tail (i.e., the camera caught the snake, but the manual image reviewers

did not). Even with the missed observation, our camera trapping technique detected the same number of pit‐tagged

P. ruthveni as the tag reader, because one individual captured on camera did not cross the tag reader. Importantly,

the camera‐detected, but tag reader‐missed, individual was the only observation of a P. ruthveni at that camera site

(C4) during the study. Camera trapping detection accuracy suggests a 30 second time‐lapse interval set to take

pictures during daylight hours was sufficient for monitoring large‐bodied snakes like P. ruthveni. Indeed, all the

cameras detected at least one P. ruthveni while operational, albeit with considerable variation in detection rates.

While the causes of variation in detection rates in our study are unknown (Rovero and Marshall 2009), the range of

variation in detection rates is extremely important for drawing inferences about survey and monitoring results from

other studies on the species.

TABLE 2 Model selection results for all binomial logistic regression models. We used the difference in Akaike's
Information Criterion adjusted for small sample sizes (ΔAICc < 2) to identify the model that best predicts whether
the algorithm would flag the snake image captured by camera traps in the Kisatchie National Forest in Louisiana,
USA during 28 March to 15 October 2019. K = number of parameters, AICc = Akaike's Information Criterion,
ΔAICc = change in AICc, wi =model weight.

Model description K AICc ΔAICc wi Model likelihood Log likelihood

Relative size + Snake amount + Covered 6 618.933 0.000 0.812 1.000 −303.401

Relative size 3 622.875 3.942 0.113 0.139 −308.419

Relative size + Snake amount 5 624.023 5.090 0.064 0.078 −306.965

Relative size * Snake amount * Covered 18 627.447 8.514 0.011 0.014 −295.178

Covered 2 669.733 50.800 0.000 0.000 −332.857

Snake amount 3 672.214 53.281 0.000 0.000 −333.088

TABLE 3 Parameter values (β) and odds ratios for each of the parameters in the top binomial logistic regression
model predicting whether the algorithm would flag the images of the snakes captured by camera traps in the
Kisatchie National Forest in Louisiana, USA during 28 March to 15 October 2019. SE = standard error,
CI = confidence intervals.

Parameter β SE 95% CI z p Odds ratio

Intercept −2.111 0.369 −2.856 to −1.408 −5.726 ≤0.001 0.121

Relative size

Medium −0.345 0.261 −0.848–0.179 −1.321 0.186 0.708

Large 1.386 0.302 0.802–1.989 4.589 ≤0.001 3.997

Snake amount

Some 0.664 0.327 0.027–1.313 2.029 0.042 1.942

Most 0.286 0.283 −0.255–0.857 1.012 0.311 1.331

Covered (Y) 0.599 0.229 0.157–1.058 2.616 0.009 1.821
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A previous camera trapping study using time‐lapse triggered camera trapping technique to survey for

P. ruthveni in potentially suitable habitats in Texas was also successful at detecting large‐bodied snake species but failed

to detect the target species (Anderson et al. 2020, Neuharth et al. 2020). Neuharth et al. (2020) recorded >8 million images

from 26 cameras at 7 sites, taking pictures at similar intervals to our study, between February and October 2016. The

2016 Texas study had an average of 172.5 ±19.8 (SD) camera trap days/camera (range = 120–228 trap days; unpublished

data). Comparing the studies based on camera trap days to detection (i.e., from deployment, how many days it took to

observe P. ruthveni, range 0–153 in our study), between 88–100% of the cameras in theTexas study should have detected

P. ruthveni, if present. Alternatively, if using the catch per unit effort (i.e., observations/camera trap days, range = 1/29–1/

171), then 50–100% of theTexas cameras should have detected P. ruthveni, if present. However, one factor impacting the

detection is the abundance of the species in each study area (McCarthy et al. 2013). The translocation site in our study has

had P. ruthveni released annually from 2010 to 2019 (123 unique individuals released), likely resulting in inflated detection

rates. Comparatively, the last known P. ruthveni observation from the Texas study was 2012, thus if P. ruthveni are still

present, they are present at very low densities, suggesting that much more effort may be required to detect them (Rudolph

et al. 2018). Clearly more research is needed to understand variation in detection rates of P. ruthveni using time‐lapse

triggered camera trapping technique, but the results of our study can begin to help discern inferences of absence from

inadequate sampling for rare species like P. ruthveni.

In addition to recording species' detections, camera traps have been considered useful in recording information on

individuals, in particular recaptures. Individual identifications work well with species that have unique markings or scars and

have been used for large cats (e.g., bobcats, Mendoza et al. 2011; tigers, Karanth et al. 2011; leopards, Hedges et al 2015).

Camera traps have been less used among reptiles; Welbourne 2013 had limited success identifying Jacky Dragons

(Amphibolurus muricatus), although Moore et al. (2020) was successful at identifying individual perentie (Varanus giganteus),

larger lizards with distinct spot patterns on their backs. Although P. ruthveni have distinctive patterns potentially allowing

for the identification of individuals, the amount of the animal showing in pictures from our work (e.g., anterior body,

posterior body), as well as body positioning, cover and lighting impeded the identification of individuals. For example, one

P. ruthveni individual was captured 5 times on tag reader/camera C11 and tag reader/camera C12 during the study, but

changes in lighting and different portions of the animal showing made it challenging to determine visually that this was the

same animal (Figure 3). More frequent removal of vegetation and other cover and reducing the time‐lapse interval should

produce more pictures of individual P. ruthveni that are identifiable and increase the probability of scoring recaptures. Small

changes in application could expand population monitoring and modeling of P. ruthveni beyond that which is feasible with

tag readers, which require initial capture of individuals to implant the pit‐tag. The camera trapping drift fence arrays

described here can monitor new individuals that do not have pit‐tags implanted, such as young produced on site or

immigrants to the site. In bypassing the initial capture requirement for pit‐tagging, the camera trapping drift fence arrays

could fully automate the mark‐recapture sampling of P. ruthveni populations, where individuals are never physically

captured but instead are monitored through image recapture potentially capable of tracking body condition, growth,

movement, and survival over time.

Using the change detection algorithm we developed, we found approximately a 50% success rate in the

detection of both P. ruthveni and other similarly sized snakes (Table 3). Given the low rate of snake observations in

general, and P. ruthveni in particular (i.e., 2 camera sites had only a single P. ruthveni detection), increasing the

success rate should be a major focus of future research. However, an average reduction of 78.5% of pictures to

evaluate (~1.17 million fewer) potentially saves 175 hours of evaluation time, assuming a manual evaluation rate of

10,000 pictures per 1.5 hours (Adams et al. 2017). The potential reduction in effort is also worth further evaluation

of the program to see if the picture setup and algorithm could be further refined.

The algorithm was successful at reducing false positives across all sites, but it also reduced true positives of

both P. ruthveni and other snake species at 4 of 5 sites. At the remaining site, camera C9, the algorithm

performed extremely well by flagging the single true positive P. ruthveni detection at that camera while also

eliminating 87.9% of true negative images. The variation in algorithm snake detections observed across sites is

likely due to the background noise in the images (e.g., moving vegetation, changing cloud cover), which
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complicated threshold determination. We expected that snakes that were not covered would present more of a pixel

change and thus be more likely to be flagged by the algorithm, but the opposite was true. The positive association of cover

in images shows that vegetation may have played 2 specific roles. First, it influenced the brightness band we used to

calculate the change detection threshold (i.e., [0.1–0.2]); snakes in the reference images that had partial cover had a smaller

change in pixel brightness, compared to snakes that were in the open, thus pixel changes from snakes in the open was not

necessarily included in the threshold calculation. Additionally, it suggests that background noise may have played a larger

than preferred role in the flagging of the images (i.e., snakes entering the field of view are not the sole cause of pixel

change calculated by the algorithm). For our study, we attempted to keep the trapping area as natural as possible to

minimize disturbance to the landscape. However, future camera trapping efforts could work on ways to reduce

background noise, such as creating and maintaining an open, uniform space beneath the camera to reduce the noise and

cover of vegetation, in order to achieve a more efficient threshold and one that could potentially be applied across

multiple cameras.

For the current version of the change detection algorithm presented here, finding the best threshold across

sites for maximizing true positives and minimizing false negatives while optimizing the number of false positives was

a challenge. There is clearly a large amount of further research to be performed in order to improve quality

assurances of camera trap image filtering and object recognition algorithms across different sites or environments

(Shahinfar et al. 2020). Nonetheless, our research provides detailed information supporting the establishment of

long‐term monitoring sites with a high degree of visual similarity in the image background. In addition, our study

provides another source of labelled images for snake species that are necessary for the practical implementation of

deep learning algorithms in the field of camera trapping (Shahinfar et al. 2020). Our study remains equivocal

regarding comparisons between PIR and TL camera trapping approaches, but we suggest advancements in TL

approaches are more feasible for researchers, as most researchers cannot improve sensor technology to increase

trapping success, but they can improve algorithm success.

MANAGEMENT IMPLICATIONS

For many rare and secretive species requiring conservation actions like P. ruthveni, non‐detections can be just as

important as detections in guiding allocation of resources. The results on variation in detection rates of our study

can begin to help discern robust inferences of absence from inadequate sampling for rare species like P. ruthveni, as

well as improve our understanding of how best to apply time‐lapse triggered camera trapping technique with a

change detection algorithm for monitoring of biodiversity more broadly. Long‐term trapping for P. ruthveni indicates

that trapping success is highly variable across years (Rudolph et al. 2018) and, given the large home ranges of this

species (Himes et al. 2006, Pierce et al. 2014), longer term camera studies should be undertaken before declaring

P. ruthveni absent from an area. From the results of our study, we were able to suggest a potential detectability

window of camera trap days with non‐detections to help infer absence, and in doing so, we hope to help guide the

application of conservation resources where they can be most beneficial to the species.
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APPENDIX A: CHANGE DETECTION ALGORITHM R CODE

## Install and load packages

pkgs <‐ c(“jpeg”, “rasterImage”, “sp”, “rgdal”)

pkgsMiss <‐ pkgs[!(pkgs %in% installed.packages()[, “Package”])] # Extract not installed packages

if(length(pkgsMiss)) install.packages(pkgsMiss)

lapply(pkgs, require, character.only = TRUE)

## Identify location of image folders

basepath <‐ NULL #Replace NULL with the folder path for the original images

path <‐ NULL #Replace NULL with the folder path to copy images to

folder.names <‐ dir(basepath, full.names = TRUE)

destination.names <‐ dir(path, full.names = TRUE)

## Run Algorithm

threshold <‐ NULL #Replace null with the threshold calculated

for(i in 1:(length(file.names) − 1)) {

file1 <‐ readJPEG(file.names[i])

file2 <‐ readJPEG(file.names[i + 1])

gray1 <‐ ((file1[,,1]+file1[,,2]+file1[,,3])/3)

gray2 <‐ ((file2[,,1]+file2[,,2]+file2[,,3])/3)

change <‐ abs(gray2 ‐ gray1)

if(sum(change > 0.1 & change < 0.2) > threshold) {

file.copy(file.names[i + 1], path)

} else {

NULL

}

}
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