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Abstract

Context Understanding how species are distributed

throughout landscapes requires knowledge of the

hierarchy of habitat selection made by individuals,

the resulting spatiotemporal structure of demography,

and the consequent dynamics of localized populations.

Objectives We examined how patterns of habitat

use, settlement, and vacancy in an endemic habitat

specialist, Sceloporus arenicolus (dunes sagebrush

lizard), varied within the Mescalero Monahans Sand-

hills ecosystem.

Methods We used a 4-year mark-recapture dataset to

develop occupancy models that identified whether

microhabitat or landscape scale best predicted S. areni-

colus spatiotemporal habitat use, settlement, and

vacancy, in both an undisturbed and disturbed

landscape.

Results Our results showed areas of high quality

habitat were used constantly and lower quality areas

were used intermittently, but repeatedly, over time in

the undisturbed landscape. Habitat use in the disturbed

landscape was spatiotemporally unpredictable. Micro-

habitat variables characterizing dune landscape topog-

raphy predicted probability of use in S. arenicolus,

while landscape-scale variables predicted probabili-

ties of settlement and vacancy. In the undisturbed

landscape, future settlement was predicted by pres-

ence of S. arenicolus, a pattern consistent with fine-

scale source-sink dynamics already described for this

species.

Conclusions Our results illustrate how spatially-

discrete but temporally-linked areas should be con-

served at fine spatiotemporal scales to secure

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10980-019-00909-5) con-
tains supplementary material, which is available to authorized
users.

D. K. Walkup (&)

Natural Resources Institute, Department of Wildlife and

Fisheries Sciences, Texas A&M University, 2260 TAMU,

578 John Kimbrough Blvd., College Station, TX 77843,

USA

e-mail: dkwalkup@tamu.edu

W. A. Ryberg

Natural Resources Institute, Texas A&M University, 2260

TAMU, 578 John Kimbrough Blvd., College Station,

TX 77843, USA

L. A. Fitzgerald

Biodiversity, Research and Teaching Collection,

Department of Wildlife and Fisheries Sciences, Texas

A&M University, 2258 TAMU, Wildlife, Fisheries, and

Ecological Science Building, College Station, TX 77843,

USA

T. J. Hibbitts

Biodiversity, Research and Teaching Collection, Natural

Resources Institute, Department of Wildlife and Fisheries

Sciences, Texas A&M University, 2258 TAMU, Wildlife,

Fisheries and Ecological Science Building,

College Station, TX 77843, USA

123

Landscape Ecol

https://doi.org/10.1007/s10980-019-00909-5(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0001-6836-4212
https://doi.org/10.1007/s10980-019-00909-5
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-019-00909-5&amp;domain=pdf
https://doi.org/10.1007/s10980-019-00909-5


persistence of S. arenicolus populations under variable

environmental conditions. Disturbances to habitat

continuity can disrupt individual movements and

create inconsistently occupied habitat patches that

appear to be unoccupied and thus are threatened by

further disturbances.

Keywords Mescalero Monahans Sandhill

ecosystem � Fragmentation � Habitat use � Sceloporus
arenicolus � Ecological scaling � Habitat specialist

Introduction

Understanding how the spatiotemporal distribution of

individuals within landscapes affects population

dynamics and species’ persistence is an overarching

question in ecology (Turner and Chapin 2005). Even

continuous habitats are not usually homogenous but

can be made up of a mosaic of resource patches

(Merriam 1995; Shaver 2005; Webb et al. 2017). The

configuration of these mosaics of varying quality

influences species’ distributions through patterns of

dispersal of individuals, populations, and species

across landscapes over time (González-Megı́as et al.

2005; Turner and Chapin 2005; Ryberg and Fitzgerald

2016). Knowing how a species is distributed across the

landscape is especially important in conservation

contexts, as variation in habitat quality can drive

population persistence in patchy landscapes (Ye et al.

2013a, b; Webb et al. 2017).

Knowing how species are distributed throughout

their habitat requires understanding the hierarchical

use of habitat of the species (Levin 1992; Wiens et al.

1993). Because the movements of individuals scale up

to broader patterns of occupancy and distribution,

characterizing distribution patterns at smaller scales

can be helpful in determining the scalar nature of

habitat use and inform conservation aims (Wiens et al.

1993). Both microhabitat and larger landscape pat-

terns influence the dynamics of how individuals move

and settle among different quality habitats (Frey et al.

2012; Herse et al. 2017). While landscape character-

istics are perhaps more easily understood and more

often considered, microhabitat characteristics add

important information and improve predictions of

population parameters such as density, abundance, and

occupancy (Cornell and Donovan 2010;McClure et al.

2012; Webb et al. 2017). For example, Michael et al.

(2017) showed that both microhabitat and landscape

scale variables were important for predicting occu-

pancy of many reptile species in a woodland-agricul-

ture matrix. Many important population processes

(e.g., survival, recruitment) are local in scale, but vary

over time and space (Krohne and Burgin 1990).

Habitat specialists in particular frequently exhibit

patterns of occupancy that are spatiotemporally vari-

able, where dynamics are governed by a hierarchical

scaling of habitat use (e.g. Bicknell’s thrush (Catharus

bicknelli), Frey et al. 2012; Eurasian reed warbler

(Acrocephalus scirpaceus), Sozio et al. 2013). Scelo-

porus arenicolus (dunes sagebrush lizard), for exam-

ple, is an endemic habitat specialist regionally

restricted to the Mescalero-Monahans Sandhills

ecosystem of West Texas and southeast New Mexico

(Fitzgerald and Painter 2009; Laurencio and Fitzger-

ald 2010). Within this ecosystem, S. arenicolus

exclusively uses the mosaic of dune blowouts in a

shinnery oak matrix (Fitzgerald et al. 1997; Fitzgerald

and Painter 2009). Dune blowouts range continuously

in size from a few meters wide to tens of meters wide.

At the microhabitat scale, individual S. arenicolus

typically prefer, but are not restricted to, larger

blowouts characterized by steeper slopes, lower sub-

strate compaction, medium sand grain sizes, and less

vegetative cover (Smolensky and Fitzgerald 2011;

Ryberg et al. 2012; Hibbitts et al. 2013; Ryberg and

Fitzgerald 2015). At a larger scale, S. arenicolus are

patchily distributed in neighborhoods (sensu Addicott

et al. 1987, localized groups of interacting individuals

within a continuously distributed population; Ryberg

et al. 2013), and survivorship and fecundity in

neighborhoods is tightly linked to habitat configura-

tion (Ryberg et al. 2015). In particular, the pattern of

dune blowouts across the landscape appears to create

source and sink neighborhoods (Ryberg et al. 2013)

such that even in continuous areas of habitat consid-

ered highly likely to contain S. arenicolus, we do not

always find them (Walkup et al. 2018). Thus, while the

spatial hierarchy of habitat use in this system is well

understood, the temporal micro-variation in neighbor-

hood occupancy within this hierarchy is not.

To gain insight into this spatiotemporal, micro-

variation in neighborhood occupancy, we develop

models that characterize determinants of habitat use,

settlement, and vacancy (i.e., occupancy, colonization,

and extinction sensu lato) at both the microhabitat and
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larger landscape scales (Betts et al. 2008; Efford and

Dawson 2012;McClure andHill 2012). By including in

our models both microhabitat and landscape variables

that reflect habitat features selectedwithin and across S.

arenicolus home ranges, respectively (Hibbitts et al.

2013; Ryberg et al. 2013;Young et al. 2018), we seek to

determine which scale better predicts S. arenicolus

spatiotemporal habitat use and therefore distribution.

More importantly, by incorporating dynamics of

settlement and vacancy along with use, we aim to

determine the scale and identity of habitat features that

predict whether an area or neighborhood is constantly

occupied, intermittently used, or not used at all.

From a conservation perspective, identifying inter-

mittently used areas (i.e. areas used in some years but

not others) is critical to the persistence of this species,

because habitats deemed unoccupied, even after very

few surveys, can be mistakenly viewed as never

occupied. Such habitats are routinely developed for oil

and gas extraction and, more recently, sand mining

industries leading to regional habitat fragmentation,

population isolation, reduced population sizes,

stochastic demography, and eventual local extirpa-

tions (Smolensky and Fitzgerald 2011; Leavitt and

Fitzgerald 2013; Walkup et al. 2017). Given the

growing prevalence of these habitat threats in the

region (e.g., Texas accounted for * 44% of total US

crude oil output in November 2016; U.S. Energy

Information Administration (EIA) 2017; Pierre et al.

2018; Wolaver et al. 2018a, b), we also develop

models to characterize determinants of habitat use,

settlement, and vacancy at both microhabitat and

larger landscape scales for a population occupying an

area undergoing oil and gas development. By focusing

on populations in disturbed as well as undisturbed

areas, we attempt to determine how and at what scale

variation in occupancy might vary spatiotemporally in

the future as this entire ecosystem changes rapidly.

Methods

Study sites

The Mescalero-Monahans Sandhills ecosystem

(MMS) of West Texas and southeast New Mexico is

a self-organized, semi-stabilized dune system formed

and maintained by wind patterns eroding and deposit-

ing sand against stabilizing shinnery oak (Quercus

havardii; Fitzgerald and Painter 2009; Laurencio and

Fitzgerald 2010). Regionally, the MMS persists in a

landscape mosaic of mesquite (Prosopis glandulosa)

flats and shinnery oak flats. Oil and natural gas

extraction has been occurring within the MMS since

the early 1900s and has followed a boom-bust pattern

of expansion and inactivity based on economic drivers

(Galley 1958; Haggerty et al. 2014). In periods of

expansion, well-pads and roads are constructed at very

fast rates, with the number of permitted wells more

than doubling in the Permian basin between 2008 and

2012 (Wolaver et al. 2018b). Well-pads and roads in

the MMS are created by bulldozing areas and covering

them with a layer of caliche (a calcium carbonate-

based soil, excavated from surrounding areas), which

maintains a hard-packed road surface. These roads and

well-pads are the primary source of habitat loss and

fragmentation in the MMS. Our study site was located

on the edge of oil and gas expansion in Andrews

County, Texas.

Trapping

Two 13.69 ha (370 m 9 370 m) trapping arrays large

enough to encompass hundreds of overlapping S.

arenicolus home ranges in addition to several oil and

gas well pads and roads were installed in May 2012.

Each of the two trapping arrays consisted of 36 sub-

grids (3 9 3 arrays with 10 m spacing) spaced 50 m

apart to make a 6 9 6 array of sub-grids (Online

Appendix Fig. 5). The 50 m spacing was twice the

average daily movement length for S. arenicolus

(Young et al. 2018), which made the sub-grids

effectively independent within trapping sessions but

not across trapping sessions, an ideal design for

characterizing variation in settlement and vacancy.

Traps were 20-l buckets buried with rims flush to the

ground, with 40 cm 9 40 cm plywood cover boards

propped 1–2 inches high (Fitzgerald 2012). One array

was constructed in disturbed habitat with 3 oil well-

pads in and around it and a road cutting through it. The

other array was in relatively undisturbed habitat. On

the disturbed array, three sub-grids in the southeast

corner were eliminated because a well-pad was

installed in that area over the winter of 2012. Sampling

occurred from April through August 2012–2015. Each

trapping session lasted 7 days in 2012 and 5 days in

2013–2015. There were five trap sessions duringMay–

August 2012. With the change to 5-day trapping
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periods, there were nine trap sessions each year during

April–August 2013–2015. Traps were checked and

cleared every 24 h.

Microhabitat variables

Microhabitat variables were measured at each trap in

2014: slope (degrees); substrate compaction (Lang

penetrometer); and percent cover for six cover types

(sand, shinnery oak, yucca/shrubs, forbs/grasses,

caliche, and litter). The microhabitat data were

averaged for each sub-grid and a Principal Compo-

nents Analysis (PCA) with the covariance matrix was

used to reduce dimensionality and identify the main

sources of variation for microhabitat in each sub-grid.

The data were transformed using log transformations

(slope and penetrometer) or arc-sine transformations

(percent cover variables) to better meet normality

assumptions of the test (Gotelli and Ellison 2004). The

first two PCA axis scores were then used as indepen-

dent variables in subsequent analyses.

Landscape variables

A supervised classification of 1-m resolution color

infrared (false-color) National Agriculture Imagery

Program (NAIP) imagery in 4-bands (red, green, blue,

and near infrared) from 2014 (Retrieved in January

2015; http://gis.apfo.usda.gov/arcgis/services/) was

used to determine five cover classes (sand, shinnery

oak, mesquite, grass, and caliche) across S. arenicolus’

range in Texas, creating a raster for each class. A 35 m

buffer was used to clip these rasters around each array.

Because sand and caliche classes are hard to distin-

guish based on spectral reflectance values, these two

cover classes were merged and considered sand. To

get the caliche cover class, polygons were hand drawn

covering roads and well-pads and merged into the

raster, leaving us with five cover classes: sand, shin-

nery oak, mesquite, grass, and road/well-pad. Rasters

were divided into a 6 9 6 grid encompassing

70 m 9 70 m, creating 36 landscapes, each centered

on one trapping sub-grid (Fig. 5).

Fragstats v. 4.2 (McGarigal et al. 2012) was used to

estimate class metrics for each landscape: mean patch

size (ha) for sand, shinnery oak, and the road/well-pad

cover layers; total edge for sand, shinnery oak, and the

road/well-pad cover layers; fractal dimension for sand

and shinnery oak cover layers, and clumpiness index

for sand and shinnery oak cover layers. Fractal

dimension represents the mean shape complexity of

patches in each cover class on a scale of 1, where the

mean focal patch is an Euclidean shape (like a square

or circle) to 2, where the mean focal patch has a highly

convoluted perimeter (Turner 1990). The clumpiness

index measures the mean degree of aggregation of

patches in each cover class across the landscape on a

scale of - 1, where the focal patch is maximally

disaggregated, to 1, where the focal class is maximally

aggregated. These class metrics were chosen because

previous research has shown that metrics of these

types have predictive value for S. arenicolus popula-

tion parameters (Ryberg et al. 2013, 2015). Total edge

was removed after constructing a correlation matrix

because it was highly correlated with other variables

(e.g. mean patch size, fractal dimension, and clumpi-

ness). The final retained variables had Pearson’s r from

- 0.43 to 0.57 for the undisturbed array and- 0.61 to

0.52 for the disturbed array. Finally, a Principal

Components Analysis (PCA), using program PAST v

3.19 (Hammer et al. 2001), was performed on the

landscape datasets from each array to identify the main

sources of variation in the datasets and reduce

dimensionality. We retained the top two principal

component axes (PC) from each analysis.

Modeling

Following the approach developed by MacKenzie

et al. (2003), dynamic occupancy models were used to

estimate patterns of settlement and vacancy in the

microhabitat and local landscape of the sampling

arrays. Because patterns of how microhabitat influ-

ences distribution of individuals across landscapes in

two continuous populations were being measured,

model parameters are best expressed as use, settle-

ment, and vacancy (following Betts et al. 2008; Efford

and Dawson 2012; McClure and Hill 2012), instead of

occupancy, colonization, and local extinction, respec-

tively. Here, use is the probability that S. arenicolus

will be present in a given sub-grid, settlement is the

probability that a sub-grid that was un-used in the

previous time period would be used in the current time

period, and vacancy is the probability that a sub-grid

that was used in the previous time period had no S.

arenicolus detected in the current time period. In this

case, settlement and vacancy represent apparent

movement, because we are not following marked
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individuals. Additionally, the density of individuals at

a site can influence settlement and vacancy estimates

depending on the locations of individuals and their

territories. Trap data were aggregated into a presence-

absence matrix for each sub-grid. To satisfy the

assumption of closure within a season, each trap

session was considered a ‘‘season’’ and the trap-days

were the repeat surveys. Then, each sample year

(2012–2015) was analyzed separately because of the

6-month interval without trapping between each

activity season. This resulted in 16 sets of models,

4 years for each of the following: undisturbed array—

microhabitat scale, undisturbed array—landscape

scale, disturbed array—microhabitat scale, and dis-

turbed array—landscape scale.

Multiple models were developed to understand

relationships of both microhabitat and landscape

variables using package unmarked (Fiske and Chandler

2011) in R v. 3.4.2 (R Core Team 2018). For each sub-

grid individually, use, settlement, vacancy, and detec-

tion were modeled as functions of the PC axis scores

using microhabitat variables in one set of models and

landscape variables in a separate set of models. The top

two PC axes scores for each of the array—scale

combinations above were included (named: UM1,

UM2, UL1, UL2, DM1, DM2, DL1, and DL2). Each

axis is interpreted in the results and described in Online

Appendix Table 5. Each trapping occasion was

included as a time covariate for settlement, vacancy,

and detection. Finally, an autocovariate was included

to account for the influence of spatial autocorrelation of

S. arenicolus detections in our models. This was

modeled as AUTOi =
P

WijYj=
P

Wij where Wij-

= the inverse geographic distance between sub-grids

i and j and Yj = the presence of S. arenicolus in sub-

grid j (i.e. 1 if present, 0 if absent) (Augustin et al.

1996; Betts et al. 2006; Chammem et al. 2012). This

autocovariate returns an index from 0 (none of the

surrounding sub-grids are occupied) to 1 (all of the

surrounding sub-grids are occupied) for each sub-grid

in each trapping occasion. Neither the time covariate

nor the spatial autocorrelation covariate were included

for the use parameter, which is the use at the initial

time period (wi).

Because of limited data, each parameter was

modeled as a function of each covariate singly or as

an additive relationship between all possible combi-

nations of two covariates. Detection (p) was modeled

first, holding the other parameters constant. Any

covariates in the top detection models (DAICc\ 2)

were retained and used to model use (w), holding
settlement (c) and vacancy (e) constant. Those steps

were repeated to model vacancy, then settlement to get

the final set of models run. Finally, for each set of

models, to estimate the betas, SE, and 95% CI’s for

each parameter, the models were model averaged

(using the models containing the given covariate) in

AICcmodavg (Mazerolle 2016), following the proce-

dure in Buckland et al. (1997) and Burnham and

Anderson (2002). Abbreviated AICc model results are

presented in Table 1, the full model results are in

Tables 5–8 in the Online Appendix. The beta and 95%

CI’s for the variables from the model averaged results

are presented in Figs. 1 and 2 and Tables 9–12 in the

Online Appendix. Inference was drawn from covari-

ates with the most weight in the top models from

Tables 1 and 5–8 in the Online Appendix. Values

reported in the text are model averaged parameter

estimates plus or minus one standard error. Figues

6–13 in the Online Appendix shows the relationships

of the variables to the parameters. For brevity,

variables related to detection probability are fully

described in the appendix to allow greater focus on

use, settlement, and vacancy parameters.

Results

Trapping

Over the 4 years of trapping (2012–2015), the two

arrays were operational for 125,712 trap-days (2012,

n = 26,568; 2013, n = 33,048; 2014, n = 35,640;

2015, n = 30,456). During this time, we captured

12,814 lizards of 8 species, of which 1539 were S.

arenicolus. Of the total captures of S. arenicolus, 726

individuals were captured: 549 on the undisturbed

array and 177 on the disturbed array. Of 813 total

recaptures, 681 were on the undisturbed array and 132

on the disturbed array.

Principal components analysis

The first two PC axes explained 57.2 and 18.4% of

the variation in microhabitat on the undisturbed

array, and 50.6 and 24.5% of the variation on the

disturbed array (Online Appendix Table 3). These
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Table 1 Top 3 models or models with DAIC B 2 for each set of models

Year Model nPars AIC DAIC AICwt cumltvWt

Undisturbed-microhabitat 1 w(UM1) c(.) e(UM2 ? A) p(UM1 ? S) 11 627.97 0.00 0.30 0.30

w(UM1) c(.) e(UM2 ? A) p(UM1 ? S) 12 629.48 1.51 0.14 0.44

2 w(UM2) c(S) e(UM2?S) p(UM1) 21 1051.53 0.00 0.16 0.16

w(UM2) c(A?S) e(UM2?S) p(UM1) 22 1051.80 0.26 0.14 0.29

w(UM2) c(UM1 ? S) e(UM2?S) p(UM1) 22 1052.23 0.70 0.11 0.40

3 w(UM2) c(UM1) e(UM1) p(UM1 ? S) 16 894.29 0.00 0.36 0.36

w(UM2) c(UM1?A) e(UM1) p(UM1 ? S) 17 896.27 1.99 0.13 0.49

w(UM2) c(UM1) e(UM1?A) p(UM1 ? S) 17 896.29 2.00 0.13 0.62

4 w(UM1) c(A) e(UM1) p(UM1) 8 860.66 0.00 0.10 0.10

w(UM1) c(.) e(UM1) p(UM1) 7 860.85 0.19 0.10 0.20

w(UM1) c(.) e(UM1 ? A) p(UM1) 8 861.12 0.46 0.08 0.28

Undisturbed-landscape 1 w(.) c(A ? S) e(UL1) p(A ? S) 14 681.79 0.00 0.11 0.11

w(UL2) c(A ? S) e(UL1) p(A ? S) 15 682.44 0.66 0.08 0.18

w(UL1) c(A ? S) e(UL1) p(A ? S) 15 682.93 1.14 0.06 0.24

2 w(.) c(UL1 ? A) e(UL2) p(UL1 ? S) 16 1117.40 0.00 0.20 0.20

w(UL2) c(UL1 ? A) e(UL2) p(UL1 ? S) 17 1118.68 1.29 0.10 0.30

w(.) c(A?S) e(UL2) p(UL1 ? S) 22 1119.20 1.80 0.08 0.38

3 w(UL1) c(A) e(UL2 ? A) p(UL2 ? S) 17 974.67 0.00 0.13 0.13

w(.) c(A) e(UL2 ? A) p(UL2 ? S) 16 974.88 0.21 0.12 0.24

w(UL1) c(UL2 ? A) e(UL2 ? A) p(UL2 ? S) 18 975.45 0.79 0.09 0.33

4 w(UL2) c(A) e(.) p(UL1) 7 902.51 0.00 0.04 0.04

w(UL2) c(UL1?A) e(.) p(UL1) 8 902.89 0.38 0.03 0.07

w(UL2) c(A) e(UL2) p(UL1) 8 903.02 0.51 0.03 0.11

Disturbed-microhabitat 1 w(DM2) c(.) e(DM2?S) p(.) 9 257.99 0.00 0.06 0.06

w(DM2) c(DM1) e(DM2?S) p(.) 10 258.23 0.24 0.05 0.12

w(DM2) c(.) e(DM2?S) p(A) 10 259.12 1.13 0.03 0.15

2 w(DM1) c(DM2?S) e(DM1) p(DM1?A) 17 384.23 0.00 0.27 0.27

w(DM1) c(DM2?S) e(DM1?A) p(DM1?A) 16 384.60 0.37 0.22 0.49

3 w(.) c(DM2) e(A?S) p(DM1) 14 406.69 0.00 0.13 0.13

w(DM2) c(DM2) e(A?S) p(DM1) 15 407.45 0.76 0.09 0.21

w(.) c(DM2?A) e(A?S) p(DM1) 15 407.55 0.86 0.08 0.30

4 w(DM2) c(DM1?S) e(DM2?A) p(DM2) 16 590.60 0.00 0.73 0.73

Disturbed-landscape 1 w(.) c(A?S) e(UL1) p(A?S) 14 681.79 0.00 0.11 0.11

w(UL2) c(A?S) e(UL1) p(A?S) 15 682.44 0.66 0.08 0.18

w(UL1) c(A?S) e(UL1) p(A?S) 15 682.93 1.14 0.06 0.24

2 w(.) c(UL1 ? A) e(UL2) p(UL1?S) 16 1117.40 0.00 0.20 0.20

w(UL2) c(UL1 ? A) e(UL2) p(UL1?S) 17 1118.68 1.29 0.10 0.30

w(.) c(A ? S) e(UL2) p(UL1?S) 22 1119.20 1.80 0.08 0.38

3 w(UL1) c(A) e(UL2 ? A) p(UL2 ? S) 17 974.67 0.00 0.13 0.13

w(.) c(A) e(UL2 ? A) p(UL2 ? S) 16 974.88 0.21 0.12 0.24

w(UL1) c(UL2 ? A) e(UL2 ? A) p(UL2 ? S) 18 975.45 0.79 0.09 0.33

4 w(UL2) c(A) e(.) p(UL1) 7 902.51 0.00 0.04 0.04

w(UL2) c(UL1 ? A) e(.) p(UL1) 8 902.89 0.38 0.03 0.07

w(UL2) c(A) e(UL2) p(UL1) 8 903.02 0.51 0.03 0.11

Shared model covariates: (.) = constant model; A = autocovariate; S = Session (time effect). Undisturbed Landscape model

covariates: UL1 = large, aggregated sand patches to small, disaggregated sand patches gradient; UL2 = large, complex shinnery oak

patches to small, simple shinnery oak patches gradient. Disturbed Landscape model covariates: DL1 = large shinnery oak patches to

large sand and road-wellpad patches gradient; DL2 = highly aggregated sand patches to complex sand and shinnery oak patches

gradient. Undisturbed Microhabitat model covariates: UM1 = high average slope to high average compaction gradient; UM2 = high

to low percent cover of oak and litter gradient. Disturbed Microhabitat model covariates: DM1 = high average slope to high average

compaction gradient; DM2 = high oak and litter cover to high sand cover gradient. For full DAIC B 2 model set, see Online

Appendix Tables 5–8
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axis scores were used as independent covariates in

settlement and vacancy models. On both undisturbed

and disturbed arrays, the first PC axis (UM1 and

DM1, respectively) represented a slope and com-

paction gradient, where higher average slopes cor-

responded with lower average compaction values.

Larger dunes with steeper slopes tend to have looser

sand, which makes for a less compact substrate,

while flatter areas correspond with more compact

soils that support mesquite grassland or areas

covered with caliche. On the undisturbed array, the

second PC axis (UM2) captured a gradient of high

to low percent shinnery oak and percent litter cover.

On the disturbed array, the second PC axis (DM2)

also captured variation in cover types, with percent

sand cover on one end of the gradient and percent

shinnery oak and percent litter cover on the other.

Since shinnery oak is the densest vegetation on our

arrays, this likely represented a cover gradient from

dense vegetation to more open sandy areas.

The first two PC axes explained 29.3 and 26.2%

of the variance in landscape configuration on the

undisturbed array, and 35.0 and 21.7% on the

disturbed array, and were retained as covariates in

the models (Online Appendix Table 3). On the

undisturbed array, the first PC axis (UL1) repre-

sented a gradient from large, aggregated sand

patches to small, more dispersed sand patches. The

second PC axis (UL2) captured a gradient of large

areas of shinnery oak corresponding with high

fractal dimensions for shinnery oak patches, indi-

cating a gradient from larger, complex shinnery oak

patches to smaller, simpler shinnery oak patches. On

the disturbed array, the first PC axis (DL1) repre-

sented a gradient where large areas of sand and

patches of caliche for roads and well-pads con-

trasted with large patches of shinnery oak, indicating

that sand and road/well-pad patches dominated in

some areas, while shinnery oak patches dominated

others. The second PC axis (DL2) captured a

gradient of larger fractal dimensions of sand and

oak patches contrasted with high clumpiness values

for sand patches, indicating that more highly

aggregated sand patches had less complex patch

shape, and that complex shapes of sand patches

correlated with complex shapes of shinnery oak

patches.

Models

Use

On the undisturbed array, there was a repeated pattern

of use during this study (Tables 1, 2). In year 1, the

probability of use of sub-grids by S. arenicolus was

restricted to areas with larger, more extensive blow-

outs on the west side of the array where mean slope

increased and mean substrate compaction decreased

(UM1; Fig. 3; Fig. 8a in Online Appendix). There was

a low probability of use on the east side of the array,

where blowouts were smaller and the landscape

transitioned to flatter mesquite grasslands (Fig. 3;

Fig. 8b in Online Appendix). In years 2 and 3,

probability of use increased as the percent cover of

shinnery oak (UM2) increased. This corresponded

with a spread in the population to the east side of the

undisturbed array (Fig. 3; Fig. 8b in Online Appen-

dix), along with higher capture rates for S. arenicolus

(Online Appendix Table 4). Finally, in year 4, the

population was mostly using the largest dune areas on

the west side of the array again, characterized by high

mean slope and low mean substrate compaction

(Fig. 3, Fig. 8a in Online Appendix).

In the disturbed array, we also quantified a dynamic

response by S. arenicolus to the microhabitat features,

but no repeating patterns of use were observed

(Tables 1, 2). Instead, there were two small, disjunct

areas of very high use in the north and southwestern

parts of the array that shifted spatially in years 1, 2, and

4 (Fig. 3). In year 3, probability of use was very low

over the whole array (w = 0.07 ± 0.06; Fig. 3). In

years 1 and 4, probability of use increased as percent

cover of sand increased and percent covers of shinnery

oak and litter decreased (DM2; Fig. 3; Fig. 8c in

Online Appendix). Probability of use for year 2

increased as mean slope increased and mean com-

paction decreased (DM1; Fig. 3; Fig. 8d in Online

Appendix).

For landscape models at both arrays, model results

for the probability of use for all years showed that

landscape variables measured generally did not have a

higher AICc than the constant use model (Table 1). On

the undisturbed array, probability of use increased

slowly each year in years 1 through 3 then declined

slightly in year 4 (Fig. 3; Fig. 9a in Online Appendix).

On the undisturbed array, year 3 had an increase in

probability of use as area and clumpiness of sand
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increased (UL1); in year 4, probability of use

decreased as area and fractal dimension of oak patches

increased (UL2; Fig. 3). On the disturbed array, years

2 and 4 had slightly higher probabilities of use than

years 1 and 3 (Fig. 3; Fig. 9b in Online Appendix).

Settlement and vacancy

For microhabitat models, probability of settlement at

both arrays had no consistent predictor variables

(Tables 1, 2; Fig. 10 in Online Appendix). In the

undisturbed array, in year 1, probability of settlement
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Fig. 1 Model averaged beta values and 95% Confidence Intervals for probability of use (w; black circles) and detection (p; gray

triangles)
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was constant (c = 0.22 ± 0.08). Year 2 probability of

settlement varied across trapping sessions (Fig. 10a in

Online Appendix). Year 3 probability of settlement

increased as mean slope increased and mean substrate

compaction decreased (UM1; Fig. 10b in Online

Appendix). Year 4 probability of settlement increased

as percent of occupied surrounding arrays increased

(Fig. 10c in Online Appendix). On the disturbed array,

year 1 probability of settlement was constant

(c = 0.09 ± 0.04) and year 2 was inestimable, most

likely due to the sparsity of data on the disturbed array.

Probability of settlement in year 3 increased as percent
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Fig. 2 Model averaged beta values and 95% Confidence Intervals for probability of settlement (c; black circles) and vacancy (e; gray
triangles)
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cover of sand increased and percent covers of shinnery

oak and litter decreased (DM2; Fig. 10d in Online

Appendix). Finally, in year 4, probability of settlement

increased as mean slope increased and mean substrate

compaction decreased (DM1; Fig. 10e in Online

Appendix); however, it was only estimable in the

middle and final trapping sessions (again, probably

due to sparsity of data during the other trapping

sessions).

For microhabitat models, probability of vacancy

was inestimable for years 1 and 3 on the undisturbed

array and years 1, 3, and 4 on the disturbed array

(Table 2). On the undisturbed array, in year 2,

probability of vacancy decreased as percent cover of

shinnery oak and litter decreased (UM2), but was only

estimable early and mid- season (Fig. 11a in Online

Appendix). In year 4, probability of vacancy increased

as mean slope decreased and mean substrate com-

paction increased (UM1; Fig. 11b in Online

Appendix). On the disturbed array, in year 2, proba-

bility of vacancy increased as mean substrate com-

paction increased (DM1; Fig. 11c in Online

Appendix).

For landscape models, settlement probabilities on

the undisturbed array were consistently best predicted

by models that included the spatial autocovariate

(percent occupied surrounding sub-grids; Tables 1, 2).

For all four years, probability of settlement increased

as percent of occupied surrounding arrays increased

(Fig. 12a–c in Online Appendix). Probability of

settlement in year 1 also had an additive effect of

session, limiting estimates to June-July and July–July

transition periods. In year 2, probability of settlement

also decreased as area and clumpiness of sand patches

increased (UL1; Fig. 12b in Online Appendix). On the

disturbed array for years 1 and 3, probability of

settlement decreased as patch areas of sand and road/

well-pad increased (DL1; Fig. 12d in Online

Table 2 Covariates from each of the top models for the microhabitat and landscape dynamic occupancy models from the undis-

turbed and disturbed arrays

Year Use Settlement Vacancy

Undisturbed-

microhabitat

1 UM1 (:slope,
;compaction)

C NE

2 UM2 (:oak-litter) :;S UM2 (:oak-litter) ? :S

3 UM2 (:oak-litter) UM1 (:slope, ;compaction) NE

4 UM1 (:slope,
;compaction)

:A UM1 (;slope, :compaction)

Undisturbed-landscape 1 C :A ? :;S NE

2 C UL1 (;large-clumpy sand) ? :A UL2 (:large-complex oak)

3 UL1 (:large-clumpy

sand)

:A UL2 (:large-complex

oak) ? :A

4 UL2 (;large-complex

oak)

:A C

Disturbed-

microhabitat

1 DM2 (:sand, ;oak-litter) C NE

2 DM1 (:slope,
;compaction)

NE DM1 (;slope, :compaction)

3 C DM2 (:sand, ;oak-litter) NE

4 DM2 (:sand, ;oak-litter) DM1 (:slope, ;compaction) ? :S NE

Disturbed-landscape 1 C DL1 (:oak, ;sand–road/well-pad) NE

2 C C C

3 C DL1 (:oak, ;sand–road/well-pad) DL1 (;Oak, :Sand–road/well-
pad)

4 C DL1 (;Oak, :Sand–Road/Well-

pad) ? :S
DL1 (;Oak, :Sand–road/well-
pad)

Model covariates are: C constant model; A autocovariate; S session (time effect); NE not estimable
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Appendix), but in year 4, probability of settlement

increased as patch areas of sand and road/well-pad

increased (DL1; Fig. 12e in Online Appendix). In year

4, we also saw an additive effect of session: early June

and early August were the only sessions in which

probability of settlement was estimable (Fig. 12e in

Online Appendix). Finally, for year 2, probability of

settlement was constant (c = 0.16 ± 0.07).

For landscape models at both arrays, probability of

vacancy was inestimable for year 1 (Table 2). On the

undisturbed array, in years 2 and 3, probability of

vacancy increased as area and fractal dimension of

shinnery oak patches increased (UL2; Fig. 13a, b in
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M
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Fig. 3 Predicted probability of use (w) by array, year, and

scale. The w values for each panel are the model averaged

results for each model, using the covariates from Fig. 1 above.

Values have been linearly interpolated across the site.

Undisturbed landscapes cover N 32.1291—32.1322� and W

102.6782—102.6745�, and disturbed landscapes cover N

32.1293—32.1324� and W 102.7416—102.7379�
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Online Appendix). Finally, in year 4, probability of

vacancy was constant (e = 0.09 ± 0.03). On the

disturbed array, in year 2, probability of vacancy

was constant (e = 0.06 ± 0.02), while for years 3 and

4, probability of vacancy increased as patch areas of

sand and road/well-pad increased (DL1; Fig. 13c in

Online Appendix).

For landscape models, we saw variation in net

differences between probability of settlement and

probability of vacancy in years 2 through 4 (when both

parameters are estimable; Fig. 4). On the undisturbed

array, probability of settlement was equal to or higher

than probability of vacancy in year 2 (Fig. 4). This

changed in years 3 and 4; in year 3 probability of

settlement was equal to or lower than probability of

vacancy, a trend that strengthened in year 4 (Fig. 4).

On the disturbed array, again we saw few consistent

patterns in net differences between probability of

settlement and probability of vacancy in years 2

through 4 (when both parameters are estimable;

Table 1). In years 2 and 4, probabilities of settlement

and vacancy were constant resulting in a consistently

high probability of settlement across the array (Fig. 4).

In year 3, there was a split where some areas had fairly

high probabilities of settlement, while others had high

probabilities of vacancy (Fig. 4). In both years 3 and 4,

probability of vacancy increased as patch areas of sand

and road/well-pad increased (DL1), but because

probability of settlement for these 2 years had oppoar-

ray relationships to patch areas of sand and road/well-

pad, we saw different patterns in probabilities of

settlement and vacancy across the array (Fig. 4).

Discussion

The overarching pattern in our study was that use,

settlement, and vacancy in S. arenicolus populations

are dynamic within its habitat at multiple scales, and

no single variable or scale can consistently predict

those dynamics over time. A general trend in our

results was that microhabitat variables predicted the

probability of use for S. arenicolus better than the

constant model across both arrays, whereas landscape

variables generally failed to predict use better than the

constant model, especially for the disturbed array

(Table 2). With respect to settlement and vacancy, we

observed an opposite, albeit weaker, trend for the

disturbed array. Microhabitat variables failed to

predict settlement and vacancy better than the constant

model or were not estimable at the disturbed array,

whereas landscape variables generally predicted set-

tlement and, to a lesser extent, vacancy better than the

constant model. Microhabitat and landscape variables

generally predicted settlement and vacancy at the

undisturbed array better than the constant model

across most years (Table 2).

These observations suggest the habitat features we

measured influence different population processes at

different spatial scales (Wiens et al. 1993). For

example, at the microhabitat scale, use is important

because it determines day-to-day behaviors related to

individual survival: food availability, thermoregula-

tion sites, and shelter from predators (Wiens et al.

1993). In the larger landscape context, settlement and

vacancy are important because they reflect larger scale

population activities such as (1) mate searching and

nest-site selection (Hill and Fitzgerald 2007 unpub-

lished report), (2) dispersal of juvenile S. arenicolus

from natal areas (Ryberg et al. 2013), or (3) move-

ments between sub-populations (Blevins and With

2011). Below, we discuss in greater detail the

observed spatiotemporal patterns of use, settlement,

and vacancy by S. arenicolus and their relationship to

specific landscape features at different scales.

Use

Previous studies have identified that within the dune

ecosystem, S. arenicolus consistently favors specific

microhabitat variables reflecting the importance of

large deep dune blowouts (Fitzgerald et al. 1997;

Fitzgerald and Painter 2009; Hibbitts et al. 2013). Our

results support previous findings, as steep slopes, loose

sand, and shinnery oak cover were good predictors of

fine-scale variation in probability of use at the

microhabitat scale (i.e., predicted use better than the

constant model). Hibbitts et al. (2013) also showed S.

arenicolus preferred steeper, sandy slopes and less

compact soils at the microhabitat scale in fragmented

and unfragmented areas. On our disturbed array, S.

arenicolus also used areas with steeper, less compact,

sandy slopes and less shinnery oak cover, although the

best predictors of use varied over space and time

(discussed below).

We observed complex temporal dynamics in habi-

tat use that have conservation implications for this

species, as well as other habitat specialists. Habitat use
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associations can change over time, expanding in

optimal resource years and becoming more restrictive

in suboptimal resource years (Sergio and Newton

2003; Hurme et al. 2008). Sergio et al. (2003) found

that Milvus migrans (black kite) occupied more low-

quality territories when population densities were

higher, while high quality territories were preferred in

all years. Additionally, Hurme et al. (2008) showed

Pteromys volans (Siberian flying squirrels) constantly

occupied some habitat patches, while also showing

intermittent occupancy of patches of lesser quality that

may have been important for maintaining networks of

habitat. The observed spatio-temporal patterns of use

by S. arenicolus on the undisturbed array are consis-

tent with these studies and likely also reflect expansion

during optimal resource years to include use of lower

quality habitat that is more dominated by shinnery

oak, and contraction during sub-optimal resource

years to areas of higher quality habitat with steep,

sandy slopes preferred by the species (Fitzgerald and

Painter 2009; Hibbitts et al. 2013; Ryberg et al.

2013, 2015). Recognizing these temporal patterns of

expanding and contracting habitat use has important

implications for conservation. For S. arenicolus, it has

been shown that integrity of populations at large scales

depends on diffusion dispersal and neighborhood

dynamics (Ryberg et al. 2013; Walkup et al. 2017).

Thus, it is critical to the persistence of this species, and

probably many others, that portions of habitat that are

used intermittently be preserved to ensure connectiv-

ity of habitat patches.

The best predictors of use at the disturbed array

varied unpredictably over space and time as compared

to the undisturbed array. Hibbitts et al. (2017) and

Young et al. (2018) showed that even the smallest road

tracks in the region can act as a barrier for S.

arenicolus, which may partially explain why there

were two core areas of habitat used on the disturbed

array to the north and south of the road. Populations of

S. arenicolus in even moderately fragmented habitats

are typically smaller and more isolated, and exhibit

dramatic disruption in demographic structure that

frequently leads to local extirpations (Smolensky and

Fitzgerald 2011; Leavitt and Fitzgerald 2013; Walkup

et al. 2017). The spatiotemporal unpredictability

observed in habitat use at the disturbed array in this

study is consistent with expectations for a fragmented

population of S. arenicolus.
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Fig. 4 The difference between predicted probability of settle-

ment (c) and predicted probability of vacancy (e) from the

model averaged values from the top models from the landscape

analyses, for each sub-grid. If settlement was greater than

vacancy, values were positive; if settlement was less than

vacancy, values were negative. Probability of vacancy was

inestimable for year 1 at both arrays, so those estimates were not

included. Values have been linearly interpolated across the site.

Undisturbed landscapes cover N 32.1291—32.1322� and W

102.6782–102.6745�, and disturbed landscapes cover N

32.1293–32.1324� and W 102.7416–102.7379�

123

Landscape Ecol



Settlement and vacancy

Landscape features predicted the probability of set-

tlement and vacancy parameters better than the

microhabitat variables for both the undisturbed and

disturbed arrays. The only models for which the

autocovariate was consistently and highly predictive

were for probability of settlement in the undisturbed

array at the landscape scale. In other words, simply the

presence of S. arenicolus in some areas at the

undisturbed array was the best predictor of settlement

dynamics. This spatiotemporal pattern of settlement

suggests that some areas act as sources for S.

arenicolus, contributing enough individuals to poten-

tially mask any other effects of the landscape on the

population. Networks of S. arenicolus neighborhoods

in uninterrupted habitats have already been shown to

exhibit population dynamics (i.e., survival and recruit-

ment dynamics) linked to landscape configuration that

are consistent with source-sink metapopulation struc-

tures (Ryberg et al. 2013), and results from this study

support those conclusions. However, the autocovariate

generally did not influence use, settlement, or vacancy

on the disturbed array, which suggests that the S.

arenicolus population on the disturbed array was not

functioning like other populations in less disturbed

habitat. Instead, the population on the disturbed array

appeared to use two areas of habitat that shifted and

sometimes disappeared over time, without any expan-

sion across the landscape dependent on the surround-

ing lizard density, as would be expected in typical

source-sink dynamics (Eriksson 1996; Diffendorfer

1998). As the prevalence of such disturbances grows

in the region, these results predict an erosion of the

neighborhood connectivity necessary to maintain S.

arenicolus dispersal and source-sink dynamics. This

could lead to local extinctions (Leavitt and Fitzgerald

2013; Walkup et al. 2017) and create disjunct,

conservation-reliant, populations of the species in

the future (i.e., requiring assisted migration or sup-

plementation for persistence).

The best predictor of future settlement is the present

location of S. arenicolus. This is supported by the

importance of the autocovariate in determining settle-

ment dynamics in undisturbed habitat. This observa-

tion helps frame the scale of spatiotemporal dynamics

of settlement and vacancy in undisturbed habitats to

within the breeding season and between years. This is

in contrast to studies of regional or range-wide patch

occupancy dynamics, which occur over much larger

spatiotemporal scales in this species (Walkup et al.

2018). For example, during the breeding season,

settlement increased earlier in the active season when

mating occurs and late in the season when hatchlings

emerge (Tables 9, 12 in Online Appendix; Fitzgerald

and Painter 2009). Settlement was lowest in early

spring and during the hottest part of the activity season

(Table 12 in Online Appendix). These fine-scale

spatiotemporal dynamics highlight the importance of

individual movements of S. arenicolus, including both

lifetime and within-season movements (Young et al.

2018), in determining patterns of use, settlement, and

vacancy in undisturbed habitats. Moreover, any inter-

ference of fine-scale spatiotemporal dynamics from

known barriers to S. arenicolus movements (e.g.,

caliche roads and well-pads; Hibbitts et al. 2017;

Young et al. 2018) act to disrupt patterns of use,

settlement, and vacancy in disturbed habitats. The

observed decrease in settlement and increase in

vacancy probabilities in the presence of roads and

well-pads at the disturbed array supports this idea

(Table 2). Indeed, the small road bisecting the

disturbed array in our study probably acted as a

barrier to individual lizard movements, providing a

plausible explanation for the observed spatiotemporal

unpredictability in use, settlement, and vacancy at that

site.

In summary, our study illustrates how some undis-

turbed S. arenicolus habitats in this ecosystem may be

used constantly, while others may be used intermit-

tently, but repeatedly, over time. As fragmentation of

contiguous habitat spreads throughout this ecosystem

(EIA 2017; Fitzgerald et al. 2018; Pierre et al. 2018;

Wolaver et al. 2018a, b), intermittent habitat use by S.

arenicolus could become proportionally more com-

mon through the reduction of constantly used habitat,

which if improperly interpreted, could be mis-used to

justify more development in these presumably unoc-

cupied habitat patches. This in turn could lead to an

erosion of habitat continuity, disjunct populations, and

even more intermittently occupied habitat patches.

These findings carry three important and interrelated

conservation implications for S. arenicolus and other

habitat specialists. First, even though a habitat

specialist may appear to occupy a large area, narrow

resource dependence of the species may allow only a

small fraction of that area to be used constantly (e.g.,

Jetz et al. 2008). The loss of these small, critically
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important, areas can have profound effects on the local

population and negate potential benefits of conserva-

tion actions elsewhere (Runge et al. 2014). For S.

arenicolus, it was shown that populations in areas of

high quality habitat that are constantly used produce

the surplus of hatchlings that diffuse across continuous

habitat. These sources are critical to the persistence of

the species across broader expanses of habitat of

varying quality (Ryberg et al. 2013; Walkup et al.

2017). Second, integrating temporal dynamics of

intermittently used areas into conservation planning

for habitat specialists may be challenging, but critical

for protecting key locations that support source-sink

dynamics (Runge et al. 2014). The first two conser-

vation implications frame the final: spatially-discrete

but temporally-linked areas should be conserved at a

scale that provides the greatest chance for persistence

of populations over the long term in the face of

variable environmental conditions.
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