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Abstract

Context Species distributions are a function of an

individual’s ability to disperse to and colonize habitat

patches. These processes depend upon landscape

configuration and composition.

Objectives Using Blanchard’s cricket frogs (Acris

blanchardi), we assessed which land cover types were

predictive of (1) presence at three spatial scales (pond-

shed, 500 and 2500 m) and (2) genetic structure. We

predicted that forested, urban, and road land covers

would negatively affect cricket frogs. We also pre-

dicted that agricultural, field, and aquatic land covers

would positively affect cricket frogs.

Methods We surveyed for cricket frogs at 28 sites in

southwestern Ohio, USA to determine presence across

different habitats and analyze genetic structure among

populations. For our first objective, we examined if

land use (crop, field, forest, and urban habitat) and

landscape features (ponds, streams, and roads)

explained presence; for our second objective, we

assessed whether these land cover types explained

genetic distance between populations.

Results Land cover did not have a strong influence

on cricket frog presence. However, multiple compet-

ing models suggested effects of roads, streams, and

land use. We found genetic structuring: populations

were grouped into five major clusters and nine finer-

scale clusters. Highways were predictive of increased

genetic distance.

Conclusions By combining a focal-patch study with

landscape genetics, our study suggests that major roads

and waterways are key features affecting species

distributions in agricultural landscapes. We demonstrate

that cricket frogs may respond to landscape features at

larger spatial scales, and that presence and movement

may be affected by different environmental factors.

Keywords Dispersal � Landscape genetics � Focal

patch � Species distribution � Functional connectivity

Introduction

The distribution of a species across a landscape is

regulated by two basic processes: extinction and

Electronic supplementary material The online version of
this article (doi:10.1007/s10980-016-0438-y) contains supple-
mentary material, which is available to authorized users.

M. B. Youngquist (&) � K. Inoue � M. D. Boone

Department of Biology, Miami University, 700 E. High

Street, Oxford, OH 45056, USA

e-mail: myoungquist@umn.edu

D. J. Berg

Department of Biology, Miami University, 1601

University Boulevard, Hamilton, OH 45011, USA

Present Address:

M. B. Youngquist

Northern Research Station, USDA Forest Services, 1831 E US

Highway 169, Grand Rapids, MN 55744, USA

123

Landscape Ecol (2017) 32:147–162

DOI 10.1007/s10980-016-0438-y

http://dx.doi.org/10.1007/s10980-016-0438-y
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-016-0438-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-016-0438-y&amp;domain=pdf


colonization (Hanski 1998). These processes are

influenced by the composition and configuration of

land cover types within landscapes, which must be

suitable for individuals to disperse through and settle

within (Pulliam 2000; Holt et al. 2005; Baguette and

Van Dyck 2007). However, the vast majority of

species distribution models correlate environmental

variables with patterns of presence or abundance of a

species, but do not directly address the process of

dispersal (Elith and Leathwick 2009). Failure to

consider the importance of dispersal could compro-

mise our ability to predict long-term population

dynamics as well as how species distributions might

shift in response to habitat alteration or climate

change. Indeed, recent research has demonstrated

land cover that predicts presence does not necessarily

predict successful dispersal between patches (i.e.

‘functional connectivity’; Baguette and Van Dyck

2007; Spear et al. 2010; Mateo-Sánchez et al. 2015;

but see Stevens et al. 2006). Further complicating the

study of species distributions is the fact that responses

of individuals to environmental factors often depend

on spatial scale and the behavior or process in question

(Pope et al. 2000; Angelone et al. 2011; Thornton et al.

2011). With regards to dispersal, for example, land

cover types that are harder to move through, or are

avoided at small spatial scales, may not be predictive

of functional connectivity across a larger landscape

(Stevens et al. 2006; Reding et al. 2013). It may be that

the operative spatial scales for certain behaviors (i.e.,

habitat selection vs. dispersal) may differ. For these

reasons, studies that account for settlement and

dispersal across spatial scales are needed to accurately

reflect the role of landscape composition and config-

uration on species distributions. Such studies are

especially important to predict species responses to

landscapes that are modified by anthropogenic

activities.

One type of modified landscape are agricultural

areas. Agriculture represents a dominant land use

around the world (Ramankutty et al. 2008) and, for

example, can exceed 60 % of land use in areas like the

Midwest United States (Nickerson et al. 2011).

Agricultural landscapes are often a mosaic of natural

and modified land cover types, and are characteristi-

cally fragmented (Bennett et al. 2006). The composi-

tion and configuration of land cover within these

landscapes can have significant consequences for the

species native to these areas. Land uses, including

urban development and agricultural practices, can

alter extinction and colonization probabilities. The

likelihood of extirpation can increase due to degraded

habitat quality and reduced recruitment (Bishop et al.

1999; Donald et al. 2001); the ability of individuals to

colonize habitats can also be reduced because roads,

cropland, and urban areas often act as barriers for

dispersal (Goldberg and Waits 2010; Holderegger and

Di Giulio 2010; Loos et al. 2014). However, responses

to land cover are often species- and landscape-specific

(Chetkiewicz et al. 2006; Baguette and Van Dyck

2007). For example, cropland, which is generally

considered a dispersal barrier, may not negatively

impact functional connectivity for some amphibian

populations (Purrenhage et al. 2009; Goldberg and

Waits 2010). Because the extent of agricultural

landscapes is predicted to increase in the future with

increasing human population (Tilman et al. 2001), it is

vital that we understand how species respond to land

cover and other features across these landscapes.

Pond-breeding amphibians depend on landscape

connectivity at multiple spatial scales, which makes

them ideal for investigating the impacts of land cover

types within mosaic landscapes on wildlife. At smaller

scales, aquatic and terrestrial habitats must be con-

nected for seasonal migrations between breeding and

overwinter habitats (Pope et al. 2000). At larger spatial

scales, many species persist as patchy populations or

metapopulations, and experience high rates of extinc-

tion and colonization (Trenham et al. 2003; Smith and

Green 2005); therefore breeding habitats must be

connected to maintain regional persistence. Despite

the importance of dispersal and landscape connectiv-

ity, many distribution models used for species man-

agement, including GAP analyses (which compare the

overlap of species distributions and protected habitat)

conducted by state and federal agencies, generally

focus only on species presence and the availability of

aquatic habitats for amphibians (e.g. Southeast GAP

Analysis Project 2014). Thus, comprehensive studies

that account for habitat requirements across all life

stages should lead to the development of more

effective management strategies.

The objectives of our study were to assess how

presence and functional connectivity of a declining

amphibian species are affected by land cover types in

landscapes dominated by agriculture. Blanchard’s

cricket frog (Acris blanchardi) is a pond-breeding

anuran that is distributed across much of the
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midwestern United States, but is experiencing decline

across parts of its range (Gray et al. 2005; Lehtinen

and Skinner 2006). It is an annual species (Lehtinen

and MacDonald 2011), which means a single year of

reproductive failure may equate to local extirpation in

the absence of immigration. A short life span, together

with an estimated maximum dispersal distance of

1.3 km (Gray et al. 2005) and annual colonization and

extinction rates of 4 and 7 %, respectively (Lehtinen

and Witter 2014), indicate that cricket frogs may be

particularly dependent on dispersal for persistence.

Previous studies have demonstrated that cricket frogs

are more likely to be found in open canopy ponds and

streams and are less likely to be found in highly

urbanized areas (Lehtinen and Skinner 2006; Trumbo

et al. 2012; Lehtinen and Witter 2014); cricket frog

metamorphs also oriented away from forested habitat

in a movement study (Youngquist and Boone 2014).

We predicted that increases in percent forest, percent

urban, and road presence would negatively affect

movement and, therefore, reduce the likelihood of

cricket frog presence. We also predicted that an

increased proportion of field habitats, stream density,

and pond density, would enhance dispersal and, thus,

positively influence cricket frog presence. Agricul-

tural habitat may have a neutral or positive effect on

cricket frog movement and presence because cricket

frogs do not appear to avoid moving through row crops

(Youngquist and Boone 2014) and are commonly

found in agricultural habitats (Lehtinen and Witter

2014).

We conducted a two-part study in southwestern

Ohio. First, we examined whether or not surrounding

land cover affected cricket frog presence within ponds;

we also assessed the spatial scale at which different

features were most predictive of abundance. Second,

we used landscape genetics to assess fine-scale patterns

of genetic structure. Landscape genetics combines

population genetics with landscape ecology, creating a

powerful tool to test hypotheses of how landscape

features affect dispersal (Storfer et al. 2010). We used

genetic distance as a proxy for dispersal with the

assumption that genetically similar populations are

primarily the result of successful dispersal and breed-

ing events (i.e. gene flow; e.g. Storfer et al. 2010; Van

Strien et al. 2012). While genetic similarity may be the

result of recent subdivisions and too little time for drift

to occur, Ohio has been predominantly farmland since

at least 1950 (Nickerson et al. 2011) and by 1980, 90 %

of its natural wetlands were lost (Dahl 1990). Because

cricket frog generation time is one year, it is likely that

enough generations have passed for drift to occur in

response to land use changes. This approach allowed us

to understand how landscape features impact the

distribution of an amphibian in an agricultural

landscape.

Methods

Sampling design

We conducted visual and call surveys at 28 permanent

ponds in Butler and Preble counties, Ohio, USA, June

7–August 5, 2010 (Fig. 1). While this study area is near

the edge of their eastern range in central Ohio, cricket

frogs are common (Lehtinen and Skinner 2006). We

used a stratified random design to select sites based on

pond size and habitat surrounding the ponds (forest,

agriculture, or urban habitat). We created a compre-

hensive water body dataset within the study area by

digitizing 2009 aerial photographs of the two counties

(total area: 2320 km2) in ArcGIS (ESRI v 9.3). We only

included ponds that were between 200 and 5000 m2.

Ponds were then categorized based on the majority

([60 %) of land cover surrounding each pond within a

50 m buffer, which is the area where cricket frogs spend

the majority of the year (Gray et al. 2005). We used the

2001 National Land Cover Database (NLCD; Homer

et al. 2007) to initially categorize ponds and final

selections were verified to ensure correct classification.

We then used a random number generator to order

ponds within a land cover category to use in the study

and sampled those that we obtained landowner permis-

sion to visit. We selected ten agricultural ponds

(including hay, pasture, and row crop surroundings),

nine forested ponds, and nine urban ponds. The unequal

sample size was the result of logistics (owner permis-

sion). For selection purposes, agricultural ponds

included hay and pasture in the NLCD dataset because

many ponds adjacent to row crop were actually in

nearby grassy fields or surrounded by grassy buffers; all

agricultural sites selected for surveys were within

100 m of row crop agriculture and most were within

50 m. The surface area of ponds varied between 426 m2

and 4728 m2 (average ± SE: 1648 ± 43 m2) and

ponds were at least 1 km apart (average ± SE:

23.7 ± 0.6 km).
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We assessed cricket frog presence using call

surveys and visual inspections June–August 2010.

Surveys began at least 1 hour after sunset on dry,

windless nights above 10 �C (Davis 2009). We waited

5 min after our arrival at a pond before beginning a

5 min call survey. Following call surveys, we visually

inspected each pond for adult and juvenile cricket

frogs for a combined time of up to six person-hours per

site. While presence of calling males always indicated

the presence of individuals, the absence of calling

males did not always indicate the absence of

individuals; in July and August, 5 out of 11 calls

surveys were false negatives. We collected tissue

samples from individuals for genetic analyses by

clipping the smallest toe on each front foot. We

immediately released individuals at the point of

capture. Tissues were stored in 95 % ethanol.

Study 1: effects of land cover on presence

Our first objective was to assess whether landscape

features predicted the presence of cricket frogs. We

Fig. 1 Sites surveyed for

the presence of cricket frogs

and subsequent population

genetic analyses. Size and

shading of dots indicates

relative abundance: 0 = 0

collected, 1 = 1–5

collected, 2 = 6–10

collected, 3 = more than 10

collected. Categories

(A agriculture, F forest,

U urban) are based on the

50 m buffer. ‘Agriculture’

includes row crop, hay, and

pasture. Thin black lines are

state and US highways; thick

black lines are interstates.

Map insets show location of

Ohio within the USA and

location of the two county

study area in southwest Ohio
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first tested for spatial autocorrelation in cricket frog

presence using Moran’s I in ArcGIS. We then

determined the composition of land use and land

cover at three scales: pond-shed (average area ± SE =

3.2 ± 0.6 ha), 500 m buffer (78.5 ha), and 2500 m

buffer (1963 ha) around surveyed ponds. These three

scales represent (1) the area that drains into the pond,

(2) the area where amphibians are most densely

congregated and the scale at which cricket frogs are

most likely to interact with upland habitat to over-

winter (Gray 1971; Semlitsch and Bodie 2003) and (3)

the scale at which an individual cricket frog may

interact with the surrounding landscape throughout its

lifetime, approximately twice the maximum recorded

dispersal distance by cricket frogs (Gray et al. 2005).

Pond-sheds were calculated with the ArcHydro data

model in ArcGIS, using the 1/9 arc-second digital

elevation model (USGS 3D Elevation Program) and

high-resolution flowlines (USGS National Hydrogra-

phy Dataset).

At each scale we calculated proportion crop land

(row crop), field (grassland, pasture, and hay), forest

(deciduous, coniferous, and mixed forest), and urban

(low, medium, and high intensity). Land use was

calculated from the 2001 NLCD (Homer et al. 2007).

We also calculated pond density (number of ponds

km-2), stream density (m km-2), and road density

(m km-2) at each spatial scale. These seven variables

were used in univariate and multivariate models,

described below. Ponds were digitized from 2009

aerial images, stream layers were obtained from the

high resolution National Hydrography Dataset

(USGS), and road layers were obtained from the

Nation Transportation Dataset (USGS; U.S. Census

Bureau).

We used logistic regression to test for effects of

landscape context on cricket frog presence. We built 11

landscape models to test for individual and combined

effects of land cover types on presence at three spatial

scales. We built seven univariate models, three multi-

variate models, and a null model that included only the

intercept. The multivariate models included a land use

model (percent crop ? percent forest ? percent

urban), a discrete features model (pond den-

sity ? stream density ? road density), and a full model

(crop ? forest ? pond ? stream ? road). To reduce

multicollinearity, as measured by variance inflation

factors, we removed percent field from all multivariate

models, percent urban from the full model, and pond

density from the full model at the 2500 m buffer scale.

Percent field and pond density were correlated with

percent crop (Spearman’s rank r[ 0.70). We compared

models using bias-corrected Akaike information criteria

(AICc), and considered that models with DAICc\ 2

(the difference in AICc between the candidate and the

most parsimonious model) were similarly parsimo-

nious; we also considered model weights in model

evaluation. AIC-based model averaging was used to

estimate parameters. Each scale (pond-shed, 500 m, or

2500 m) was tested separately because of the relatively

small sample size (N = 28). We used the packages

MASS (Venables and Ripley 2002) and AICcmodavg

(Mazerolle 2015) in R (v3.1.0; R Core Team 2014).

Study 2: effects of land use on population genetics

Our second objective was to test whether landscape

features affected functional connectivity, using

genetic distance as a response. To ensure an adequate

estimation of allele frequencies, we only used sites

where we collected at least ten individuals for all

genetic analyses; as a result we genotyped 182

individuals from ten pond sites. We extracted genomic

DNA from toe clips using a standard phenol–chloro-

form procedure. We used single and multiplex poly-

merase chain reactions (PCR) to amplify ten

microsatellite loci (Arc-3 and Arc-2, Arc-17 and

Arc-36, Arc-28, Arc-14, Arc-34, Arc-29, Arc-8, and

Arc-35), following the protocol of Beauclerc et al.

(2007). Forward primers were labeled with fluorescent

dyes (6-FAM, NED, HEX, or PET) for visualization.

We performed fragment analyses on an ABI 3130 lx

Genetic Analyzer using LIZ600 size standard (Life

Technologies). We used Peak Scanner (v1.0; Life

Technologies) to score allele fragment lengths and

TANDEM (v1.07; Matschiner and Salzburger 2009)

to assign integer values to fragment lengths. We tested

for linkage disequilibrium and deviation from Hardy-

Weinberg expectation with Bonferonni correction for

both, using exact tests in Genepop (v4.2; Raymond

and Rousset 1995; Rousset 2008). We tested for the

presence of null alleles (fragments that failed to

amplify and, thus, were not detected) using Micro-

Checker (Van Oosterhout et al. 2004). We calculated

population summary statistics in GenAlEx (v6;

Peakall and Smouse 2006, 2012); these included mean

number of alleles (NA), number of private alleles (NP),

observed and expected heterozygosity (HO and HE),
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and inbreeding coefficient (FIS) for each population.

To correct NA for sample size bias, we estimated

allelic richness (rarefied mean number of alleles per

locus; AR) with a standardized sample size of 11

individuals (smallest sample size across populations)

in FSTAT (v2.9.2.3; Goudet 1995). We calculated

pairwise genetic distance between pond sites (FST) for

use in regression analyses (GenAlEx v6).

Population structure

We tested for the presence of genetic clustering using

STRUCTURE (v2.3.4; Pritchard et al. 2000), which

creates a Bayesian model based on allele frequencies

that probabilistically assigns individuals to genetic

clusters independent of sampling location and then

infers the number of distinct genetic populations (k).

We used a batch run in which we tested for k = 1

through 10 (because we had 10 sites), with 10

replicates per each k; each run had a burn-in period

of 2 9 105 iterations (initial iterations that were

discarded) followed by 2 9 106 iterations (sufficient

for model convergence; Gilbert et al. 2012); all other

parameters were set to default. Using STRUCTURE

HARVESTER (Earl and vonHoldt 2012), we evalu-

ated the most likely number of population clusters

(k) based on the maximum log probability (ln Pr(X|k)),

as well as the second order rate of change (Dk; Evanno

et al. 2005). In general, Dk detects the strongest

patterns of population structure, while log probability

detects finer scale population structure (Evanno et al.

2005; Coulon et al. 2008a; Fisher-Reid et al. 2013).

We used CLUMPP (v1.1.2; Jakobsson and Rosenberg

2007) and DISTRUCT (v1.1; Rosenberg 2004) to

average across runs and visualize the most likely

values of k.

Landscape genetics

To examine effects of land cover on genetic structure,

we tested for isolation-by-resistance (IBR; McRae

2006) among populations by regressing landscape

resistance distances with genetic distance (FST).

Isolation-by-resistance assumes that some landscape

features are more permeable (less resistant) to dis-

persing individuals than others. Landscape features

are assigned different resistance values and pairwise

landscape distances are calculated based on least-

resistant paths between populations. To prevent bias

associated with assigning weights to each land cover

layer when creating a multivariate landscape surface

(Spear et al. 2010; Zeller et al. 2012), we tested the

singular effects of different landscape features as well

as a combined model that assumed equal weights.

We tested nine models corresponding to resistances

of different land covers that fell into four categories:

corridor, barrier, full, and null (Table 1). We con-

structed four corridor models (Field, Crop, Stepping

Stone, and Riparian) based on the predictions that

aquatic features (streams and ponds), field (natural

grasslands, hay, and pasture) and row crop land uses

would enable dispersal (Lehtinen and Witter 2014;

Youngquist and Boone 2014). Stepping Stone and

Riparian models were based on aquatic features. For

the Riparian Model, we calculated distance from the

nearest stream or pond at each cell; movement

becomes more costly as individuals move further

away from aquatic features. In the Stepping Stone

Model, we used a binary landscape where only aquatic

features were permeable to dispersal. We constructed

three barrier models (Highway, Urban, and Forest)

based on the predictions that major roads, urban land

cover, and forested land cover would hinder dispersal

(Holderegger and Di Giulio 2010; Trumbo et al. 2012;

Youngquist and Boone 2014). For the Highway

Model, we assigned resistance values for major roads

based on relative traffic densities (i.e., state routes, US

highways, and Interstate highways; Ohio Department

of Transportation). For the Combined Model, we

added three models into a single resistance layer: land

cover (where each cell was assigned a resistance value

based on the majority land cover), Highway Model,

and Riparian Model. We constructed a single null

model, the Isolation-by-distance Model, in which all

land uses and features were equally permeable to

dispersal. Landscape resistance surfaces were created

in ArcGIS with a 100 m cell. This cell size enabled us

to size to increase computational processing speed

(needed for resistance distance analysis) and calculate

percentages of land cover type from 2001 NLCD,

which has a 30 m cell size, while retaining relatively

high resolution across the landscape. Land cover, road,

pond, and stream layers were the same as those used in

Study 1.

We used Circuitscape (v4.0; McRae 2006; McRae

et al. 2008) in ArcGIS to calculate resistance distances

between populations for each model. Circuitscape

uses circuit theory to model the flow of current (i.e.
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dispersal) between populations through a resistance

surface and allows for multiple pathways. We used the

pairwise mode and eight-neighbor connection option.

We initially assigned landscape resistances for each

land-cover layer on a scale of 1 to 100 (1 = com-

pletely permeable and 100 = complete barrier to

dispersal; Table 1). However, because calculating

the resistance distance is sensitive to the range of

values used for parameterization (Koen et al. 2012b),

we created two additional scales of landscape resis-

tances by taking the square-root and square of the first

dataset (i.e., scales of 1–10 and 1–10,000 respectively;

e.g. Koen et al. 2012a, b; Van Strien et al. 2012).

Because the combined model was the summation of

three layers, resistances ranged from 3 to 28, 3 to 264,

and 3 to 24,096.

We used linear mixed effects models (Van Strien

et al. 2012) to determine which IBR models best

explained pairwise genetic distance (FST). This

method accounts for the non-independence of pairwise

distances using maximum-likelihood population

effects modeling and estimates parameters using

residual maximum-likelihood criteria (REML; Clarke

et al. 2002). Each predictor variable (effective resis-

tance distance) was centered around the mean and

tested individually in univariate models. We compared

models using R2
b (Edwards et al. 2008), calculated

from the Kenward-Rogers approximation of F and

denominator degrees of freedom (Kenward and Roger

1997): the mixed model with the fixed effect (land-

scape resistance distance) and random effect (covari-

ate structure of distance matrix) was compared to a

null model with only an intercept and random effect

(Edwards et al. 2008). We used R2
b to compare models

rather than AIC because AIC is not suitable to

compare fixed effects when using REML (Clarke

et al. 2002). The different scales (1–10, 1–100, and

1–10,000) were compared separately. We used the

packages lme4 (Bates et al. 2014) and pbkrtest

(Halekoh and Højsgaard 2014) in R v3.1.0 (R Core

Team 2014).

Results

Study 1: effects of land use on presence

Across all sites, average proportion crop, field, forest,

and urban, along with pond density, were similar

Table 1 Description of mixed effects models used for testing effects of landscape resistance on genetic distance

Hypothesis category Model Resistance scale

Corridor Stepping stone Streams and ponds = 1; terrestrial = 100

Ripariana Nearest to aquatic features = 1; farthest = 100

Field 100 % field = 1; 0 % field = 100

Crop 100 % crop = 1; 0 % crop = 100

Barrier Highwayb State route = 50; US highways = 75; interstate = 100

Urban 0 % urban = 1; 100 % urban = 100

Forest 0 % forest = 1; 100 % forest = 100

Full Combinedc Corridor = 3; barrier = 264

Null Isolation-by-distance 1

Percent land cover and riparian resistance were continuous variables and all others were categorical. We used three scales: 1–10,

1–100, and 1–10,000. This table shows resistance based on 1–100 range. The full model is a summation of resistance for majority

land cover, highway, and riparian layers; the scale is relative to complete corridor and complete barrier
a For the Riparian model, we reclassified distance from stream and ponds into 10 groups and assigned resistance accordingly. The

maximum distance between aquatic features was 2163 m; distances 0–216 m from aquatic features had a resistance of 1 and

distances 1950–2163 m had the maximum resistance
b Relative resistance values for state routes, US highways, and interstates were based on differences in traffic counts between road

types and values were either square-rooted or squared for the 1–10 and 1–10,000 resistance ranges, respectively; all non-highway

cells were assigned a value of 1
c The full model is a summation of resistance for majority land cover, highway, and riparian layers. The scale is relative to complete

corridor and complete barrier; the minimum resistance is 3 and max is 28, 264 and 24,096 for each scale
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among the three spatial scales, while density of

streams and roads was greater at the 2500 m scale

(Table 2). The increase in streams and roads from

pond-shed to 2500 m resulted because most sites were

at least 300 m from these features. The range and

standard error of land use and pond density were

narrower at the 2500 m scale, indicating that the

landscape mosaic became more similar among sites at

the larger spatial scale. Most focal ponds, even if in an

urban or forested area near the pond, were embedded

in landscapes that consisted mostly of open habitat

(crop and fields). Therefore, landscape composition at

larger spatial scales was similar.

We detected cricket frogs at 50 % of the sampled

sites: 6/10 field, 4/9 urban, 4/9 forest. There was no

spatial autocorrelation among sites with cricket frogs

(Moran’s I = 0.02, p = 0.72), indicating that popu-

lations were not spatially clustered in the study region.

There was weak support for some land cover types

being predictive of cricket frog presence at different

spatial scales (Table 3). At the pond-shed scale, the

null model had the best support. At the 500 m scale,

there were four competing models that explained the

presence of cricket frogs. The null model again had the

best support; road density and percent crop had a

negative association with cricket frog presence; and

percent forest had a positive association with cricket

frogs. At 2500 m, the null model ranked first, followed

by stream density, percent crop, pond density, percent

field, and percent urban. Overall, the null model was

30–40 % more likely to be the best model compared to

the next competing model (Table 3).

Study 2: effects of land use on population genetics

Overall, two sites at one locus (Arc-29) departed from

Hardy-Weinberg equilibrium (p\ 0.0005) and two

pairs of loci showed signs of linkage disequilibrium at

one or two sites (Arc-3/Arc-14; Arc-36/Arc-8); these

could result from small sample sizes, genetic drift, or

outcrossing. Acr29 had null alleles at three sites and

Acr35 had null alleles at one site. However, there were

no overall patterns and removal of Acr29 did not

significantly alter results (data not shown); therefore,

we used all loci in further analyses. The ten loci had

between 4 and 27 alleles each (average = 12.5 ± 2.3)

across all samples. Mean allelic richness and heterozy-

gosity over the ten loci were similar across sites

(Table 4). All pairwise FST values were significantly

different from zero (p\ 0.0001) and ranged from 0.03

to 0.15 (Table S1 in supplementary material). Site U5

had consistently higher pairwise FST values compared

to other sites as well as fewer alleles per locus and

lower observed heterozygosity (Table 4), indicating

that this site was the most genetically isolated of the

sites.

STRUCTURE analyses showed evidence of

genetic clusters. Using the Dk method, STRUCTURE

showed five clusters across the 10 focal ponds (k = 5;

Table 4; Figs. 2, S1). The five clusters showed a

pattern in which Clusters 1 and 4 were separated from

all others by US highways and Cluster 5 was separated

from all others by the Great Miami River (Fig. 2).

Cluster 2 was bisected by a US highway. The log

probability method supported the presence of nine

Table 2 Average ± SE and ranges of land use and landscape features at two spatial scales across all surveyed sites around focal

ponds

Scale Urban (%) Forest (%) Field (%) Crop (%) Pond

(N/km2)

Stream

(m/km2)

Road

(m/km2)

Pond-shed

Average ± SE 28.8 ± 6.7 17.1 ± 5.9 12.3 ± 4.7 39.2 ± 8.4 0.6 ± 0.6 0 1691.3 ± 466.0

Range 0–100 0–100 0–83.3 0–100 0–17.9 0 0–9103.7

500 m

Average ± SE 16.7 ± 3.4 19.1 ± 3.5 20.4 ± 4.2 42.9 ± 6.3 2.5 ± 0.6 1028.5 ± 163.1 3273.8 ± 355.8

Range 0–72.0 0–61.9 0–68.5 0–94.2 0–14.2 0–2475.8 1412.1–9743.1

2500 m

Average ± SE 15.8 ± 2.7 17.7 ± 1.8 21.5 ± 3.3 43.9 ± 4.8 2.1 ± 0.3 1178.7 ± 61.6 3174.4 ± 279.3

Range 3.7–59.0 3.0–39.0 0–49.7 5.5–90.6 0–5.8 559.1–1726.9 1722.0–6919.4
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clusters (Figs. 2, S1), indicating that each sampled site

was a unique genetic cluster separated by state routes

and US highways; the exception was the clustering of

sites A1 and A2, which were not separated by a major

road and formed a single genetic population. Overall,

this suggests that populations were moderately to

highly isolated and that US highways and the Great

Miami River played a role in isolating these

populations.

The best-supported mixed effects model, regardless

of specification of resistance values, was the Highway

Model (R2
b ¼ 0:67, p\ 0.0001; Table 5); state routes

and US highways were impediments to gene flow. The

Isolation-by-distance Model was the second best

model, overall, indicating that all other land uses and

landscape features were permeable to dispersal. Using

different ranges of resistance values affected the

number and width of paths calculated by Cir-

cuitscape such that paths became fewer and more

strictly defined as the maximum resistance value

increased (Fig. 3). These differences resulted in

Forest, Riparian, and Stepping Stone models being

sensitive to the initial specification of resistances.

While forest was supported as a barrier to gene

flow when resistances were 1–10 (R2
b ¼ 0:45,

p\ 0.0001), it was not the case when the maximum

resistance was 100 or 10,000 (1–100: R2
b ¼ 0:00,

p = 0.92; 1–10,000: R2
b ¼ 0:01, p = 0.34; Table 5).

The Riparian and Stepping Stone models were ranked

3rd at the 1–10 and 1–100 ranges, but were least

supported and not significant when resistances ranged

Table 3 Competing

models (DAICc B 2) for

effects of landscape

variables on cricket frog

presence from logistic

regression at the pond-shed,

500 and 2500 m spatial

scales

LL is log likelihood.

Parameter estimates are

model averages;

unconditional SE are in

parentheses

Scale Model DAICc Model weight -LL Parameter (SE)

Pond-shed Null 0.0 0.43 19.41 N/A

500 m Null 0.0 0.25 19.41 N/A

Road density 0.6 0.18 18.56 -0.0003 (0.0003)

Forest 1.3 0.13 18.88 2.16 (2.23)

Crop 2.0 0.09 19.24 -0.60 (1.26)

2500 m Null 0 0.22 19.41 N/A

Stream density 0.48 0.17 18.49 0.0018 (0.0014)

Crop 1.15 0.12 18.82 -1.73 (1.68)

Pond density 1.3 0.11 18.89 0.23 (0.23)

Field 1.68 0.09 19.09 1.77 (2.23)

Urban 1.97 0.08 19.23 1.51 (2.93)

Table 4 Sample size (N), average number of observed alleles (NA), rarified allelic richness (AR) number of observed private alleles

(NP), observed and expected heterozygosity (HO, HE), and inbreeding coefficient (FIS) for each site included in genetic analyses

Cluster Site ID N NA AR NP HO HE FIS

1 A1 11 5.6 5.5 1 0.745 0.66 -0.137

A2 17 5.6 4.9 2 0.64 0.596 -0.059

2 A6 20 7.1 5.9 1 0.746 0.732 -0.035

F3 12 4.7 4.5 2 0.658 0.634 -0.036

A9 16 6.2 5.5 8 0.637 0.665 0.020

3 U5 20 3.9 3.5 0 0.538 0.534 -0.003

4 U7 21 6.6 5.2 4 0.591 0.624 0.041

F7 20 6.5 5.4 2 0.668 0.686 0.078

5 U8 24 5.0 4.4 0 0.676 0.629 -0.067

A10 21 5.8 4.7 3 0.604 0.645 0.071

The first column indicates clustering based on STRUCTURE results for k = 5
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from 1 to 10,000 (R2
b \ 0:03). Field, Urban, and Crop

models significantly explained genetic distance across

all ranges of resistance values (p\ 0.04). However,

based on R2
b, they did not explain variation better than

the uniform resistance model (Table 5). The Com-

bined Model was generally ranked low and did not

k=5

k=9
A2    A1   A6 F3     A9 U5    F7 U7 U8    A10

A2    A1   A6 F3     A9 U5    F7 U7 U8    A10

|    Cluster 1   | Cluster 2  |Cluster 3|   Cluster 4   | Cluster 5    |

Fig. 2 Genetic cluster results from STRUCTURE, showing

k = 5 and k = 9. Each bar represents an individual and colors

correspond to the probability of that individual being assigned to

a given cluster. Pie charts on map correspond to k = 5

proportion of individuals assigned to each of the five clusters;

labels correspond to the surveyed sites. Major roads are depicted

as black lines; thinnest state route, medium US highway, thickest

interstate. Blue line is the Great Miami River

Table 5 Mixed effects

model ranking based on R2
b

(list order is based on R2
b

across all scales) for effects

of landscape features on

genetic distance (FST)

Model descriptions are in

Table 1. Bolded R2
b are

significant based on log

likelihood ratio test

B barrier hypotheses;

C corridor hypotheses;

N null hypothesis

Model Range of resistances

1–10 1–100 1–10,000

R2
b p R2

b p R2
b p

Highway (B) 0.67 \0.0001 0.67 \0.0001 0.67 \0.0001

Isolation-by-distance (N) 0.60 \0.0001 0.60 \0.0001 0.60 \0.0001

Field (C) 0.59 \0.0001 0.57 \0.0001 0.54 \0.0001

Urban (B) 0.46 \0.0001 0.46 0.003 0.55 0.01

Row crop (C) 0.39 \0.0001 0.37 0.003 0.34 0.04

Riparian (C) 0.59 \0.0001 0.57 \0.0001 0.00 0.95

Stepping stone (C) 0.59 \0.0001 0.56 \0.0001 0.03 0.64

Combined (C ? B) 0.56 \0.0001 0.36 \0.0001 0.07 0.37

Forest (B) 0.45 \0.0001 0.00 0.92 0.11 0.34
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explain genetic distance better than the univariate

models (Table 5).

Discussion

By combining landscape approaches with population

genetics, we demonstrate that cricket frog distribution

was affected by the composition of the landscape. Our

results indicate that the effects of specific landscape

features depend on the metric in question—in this

case, presence and functional connectivity. Further-

more, results from this study, in conjunction with other

research (e.g. Pope et al. 2000; Angelone et al. 2011;

Thornton et al. 2011), point to the importance of

considering spatial scale when studying effects of

environmental factors on species distributions.

Counter to our predictions, our results indicate that

cricket frog presence was not strongly affected by the

surrounding landscape context. Support for the null

model (intercept only) at all scales suggests that all

land cover types were equally likely to influence

presence and relative abundance of cricket frogs at

smaller spatial scales. These results could be explained

by cricket frog tadpoles not being directly impacted by

land use near ponds (Youngquist and Boone, unpub-

lished; but see Puglis and Boone 2012). However,

there were multiple competing models at the 500 and

2500 m spatial scales. Model weights were low

indicating high uncertainty regarding the best model.

Percent crop, despite having low Akaike weights, was

a competing model at the larger spatial scales and was

negatively related to cricket frog presence. This

contrasted with our predictions based on observation

of cricket frogs being common in agricultural ponds

(Lehtinen and Witter 2014; Youngquist, pers. obs.).

However, perhaps this result is not surprising given the

negative effects of intensive agriculture on wildlife in

general (Donald et al. 2001; Dudgeon et al. 2006; Potts

et al. 2010). We also found a negative correlation

between cropland and pond density, indicating that

areas under intensive agricultural production may not

have an abundance of habitat for cricket frogs. At the

2500 m scale, stream and pond density were positively

associated with cricket frog abundance. Cricket frogs

are frequently found along streams (Lehtinen and

Witter 2014), which may increase landscape connec-

tivity, and thus presence at multiple sites, by providing

corridors for movement. Other studies have also found

positive associations between aquatic features and

amphibian presence, suggesting the importance of

these features for maintaining regional population

structure (Vos and Stumpel 1995; Denoël and

Lehmann 2006). Despite the model uncertainty, our

results indicate that cricket frog adults may be habitat

generalists across spatial scales. We must note,

however, that our landscape matrix was dominated

by agriculture. The optimal spatial scale to assess the

Fig. 3 Relationship between parameterizing resistance values

and Circuitscape current maps, which are used to calculate

average effective resistance distance. All figures relate to the

hypothesis that forest is a barrier. High current paths (white) are

analogous to least cost paths. a Resistance surface of percent

forest. Black high resistance; white low resistance. b Current

map for resistance values 1–10. c Current map for resistance

values 1–100. d Current map for resistance values 1–10,000. For

b–d, black low current and white high current. b–d demonstrate

that higher contrast between high- and low-resistance values

(larger range) results in narrower, more restricted paths
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relationship between landscape composition and

species presence may change as a function of

landscape heterogeneity. Because our study was a

snapshot of regional cricket frog presences over a

single year, and because cricket frogs have relatively

high rates of local extinction (7 %) and colonization

(4 %) per year, the observed abundances could change

from year to year (Lehtinen and Witter 2014).

However, our random selection of ponds should be

representative of available habitats in the study area

and we would not expect species to dramatically alter

their habitat preferences between years.

The landscape genetics analyses considered effects

of landscape composition on cricket frog distribution at

a larger scale than the focal-pond study. The results of

these analyses demonstrated that functional connectiv-

ity was affected by the landscape matrix, with certain

features acting as barriers or corridors to gene flow. The

IBR model in which highways were partial barriers to

gene flow best explained variation in pairwise genetic

distance between sampled ponds, across all three scales

of resistance values. These results match with the fine-

scale (log probability; k = 9) Bayesian clustering

results showing nine clusters: all clusters were sepa-

rated by either state routes or US highways. However,

when looking at higher-level patterns of structure (Dk;

k = 5), the effect of highways was not as apparent.

This suggests that some individuals were able to

successfully disperse across these roads, enabling gene

flow. Streams may provide one conduit for traversing

roads. While resistance surfaces including streams did

not explain genetic distance better than a uniform

landscape, the Riparian and Stepping Stone models

were ranked third and fourth when resistance values

were scaled 1–10 or 1–100. With proper management,

waterways could connect habitats on opposite sides of

roads via underpasses (Lesbarrères and Fahrig 2012).

The lack of a strong genetic signature supporting

streams or ponds as pathways, despite their moderate

importance for presence, may be an outcome of cricket

frogs dispersing terrestrially. For instance, although we

rejected crop and field land cover types as corridors,

there was no evidence that these land cover types

hindered functional connectivity of the landscape. This

can be explained by the willingness of cricket frog

metamorphs to move through corn fields and grassy

fields (Youngquist and Boone 2014). Our Combined

Model, which summed the resistances of land cover,

streams, and roads, was one of the lowest ranked

models. These results indicate that the landscape

matrix in southwest Ohio is permeable to cricket frog

dispersal. There were some differences in model

ranking among the different ranges of resistance values

and we must note that there is not yet a formal method

to compare between models based on R2
b. Despite this,

the consistency in the ranking of the top models

suggests our conclusion that major roads are an

impediment to dispersal, while other land cover types

are permeable, is robust.

The observed differences in model significance

among different resistance scales highlights the

importance of resistance parameterization. Because

Circuitscape allows individuals to travel across mul-

tiple paths, instead of calculating a single least-cost-

path between sites, the relative contrast between high

and low resistance habitats can alter conclusions (e.g.,

Koen et al. 2012a). Therefore, when parameterizing

models for habitat suitability or dispersal resistance,

the range of resistance values should match the

biology and behavior of the organism. For example,

if a species is highly sensitivity to habitat edges, it

would be prudent to have a large range of resistance

values (high contrast between suitable and unsuit-

able land cover) to reflect this behavior. Furthermore,

using a high-contrast map will ensure that paths are

restricted to the feature in question (Fig. 3) and

enables researchers to test feature-specific hypotheses.

In our study, using a high contrast resistance layer for

the Riparian Model helped us conclude that cricket

frog dispersal was not limited to riparian habitat.

In our present study, highways were the main

predictor of genetic distance. These results are not

surprising because the negative effects of roads on

gene flow and population connectivity are supported

by a plethora of studies (e.g., Holderegger and Di

Giulio 2010). However, road density was only weakly

predictive of abundance: it only ranked as a competing

model to explain cricket frog presence at the 500 m

scale. Genetic distance may have responded more

strongly than presence to road density for a couple

reasons. First, high road density, a proxy for urban

development, may not reflect habitat suitability for

amphibians because ponds in urban areas may be in

city parks where populations are able to persist.

Secondly, roads are often leaky barriers to dispersal

and might not completely prevent movement

(Holderegger and Di Giulio 2010), and therefore,
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colonization. Detecting effects of roads on genetic

distance, but not presence, indicates that roads may

affect species over longer temporal scales, even if they

are leaky barriers.

Other than the effects of roads on cricket frog

distribution at larger spatial scales, our results show

relatively weak effects of land cover on cricket frog

presence and genetic structure. These results contrast

with other studies showing that cricket frog presence

and movement behavior are sensitive to forest and

urban land cover types (Lehtinen and Skinner 2006;

Trumbo et al. 2012; Youngquist and Boone 2014). The

area used in our study was relatively homogeneous

agricultural habitat: dominated by crop, pasture, and

hay (Fig. 1). High intensity urban land cover, where

impervious surface is the majority of the surface area,

and forest land cover were relatively sparse in our

study area (3 % medium-high intensity development

and 16 % forest). Individuals may be able to find

alternative routes to bypass these unfavorable habitats

when they cover a small fraction of the landscape,

taking advantage of slightly longer routes around

small patches of unfavorable land cover. This is

especially likely considering the lack of effect of other

land cover types on genetic structure. Finally, the

majority of urban ponds in this study were backyard

ponds in suburban areas, thereby limiting our ability to

detect effects of high intensity urban land use on

presence. At other spatial scales or in landscapes

dominated by forest or high intensity urbanization,

these factors could become more significant in affect-

ing cricket frog distribution.

Conclusions

Our study adds to a growing body of literature

suggesting that agricultural landscapes can provide

suitable habitat for a wide range of species and are

permeable to wildlife movement (Field et al. 2007;

Céréghino et al. 2008; Purrenhage et al. 2009;

Goldberg and Waits 2010; but see Donald et al.

2001; Benton et al. 2003). Overall, our results indicate

that cricket frogs are tolerant of large variation in

landscape composition; they are able to inhabit

permanent ponds in a variety of habitat matrices and

most land uses are permeable to gene flow. Only

highways appeared to impede movement among

populations. However, the effects of landscape con-

figuration and composition on cricket frogs at larger

spatial scales remain unknown. Our results do not

negate the fact that conversion of natural wetlands,

grasslands, and forests for agriculture has overall had

negative consequences for many species (Donald et al.

2001; Dudgeon et al. 2006; Potts et al. 2010).

Maintaining landscape heterogeneity within agricul-

tural landscapes may be the best way to conserve

biodiversity (Benton et al. 2003).

Finally, our results indicate that landscape connec-

tivity may be particularly important for species that,

like cricket frogs, tend toward being habitat generalists

and have high population turnover. In agricultural

landscapes where the majority of land use is crop and

pasture, roads and waterways may act as key features

across the landscape and play disproportionate roles in

species distributions. However, species with similar

ecologies can respond differently to the same land-

scape (e.g., Richardson 2012); other open canopy

species may be more sensitive to agricultural activities

than cricket frogs (e.g., Row et al. 2010; Loos et al.

2014).

The importance of a multivariate approach when

examining how landscape context may affect the

distributions of species cannot be understated. A

number of studies have shown that the effects of

landscape composition and configuration on the

processes that affect distributions often do no translate

across spatial scales (Pope et al. 2000; Murphy et al.

2010; Angelone et al. 2011; but see Stevens et al.

2006). One reason, for example, is that different

aspects of dispersal—crossing into the matrix, finding

new habitat, and establishing or integrating into a new

population—occur at different spatial scales (Leidner

and Haddad 2011). Similarly, for species with com-

plex life cycles, habitat requirements for larval and

adult stages may lead to differences in perceived

optimal spatial scales between life stages. All of this

culminates in the reality that observed habitat prefer-

ences within the home ranges of individuals may not

reflect functional connectivity at the population/

metapopulation level (Coulon et al. 2008b; Reding

et al. 2013; Mateo-Sánchez et al. 2015). Management

goals must consider taxon- or species-specific behav-

iors, match the scale at which individuals interact with

the landscape, and target the process of interest. Only

through comprehensive, multi-scale studies, can we
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develop an understanding of the relationship between

organisms and their habitats.
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