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ABSTRACT 

 

Use of Social Information for Habitat Selection in Songbirds. (May 2011) 

Shannon Leigh Farrell, B.A., Brown University; M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Michael L. Morrison 

 

 Habitat selection research has focused on the role of vegetative and geologic 

habitat characteristics or antagonistic behavioral interactions.  Conspecifics can confer 

information about habitat quality and provide positive density-dependent effects that 

may result in improved fitness, resulting in positive behavioral responses to conspecifics 

as a habitat selection strategy.  I conducted 3 replicated, manipulative experiments to 

investigate use of conspecific cues in habitat selection for the golden-cheeked warbler 

(Dendroica chrysoparia) using simulated conspecific vocalizations during pre-

settlement and post-breeding periods, across a range of woodland canopy cover.  I 

measured territory density, pairing, and fledging success in paired treatment and control 

units.  Territory density was >2 times higher in treatment units across the range of 

canopy (P = 0.02).  Pairing success was positively correlated with territory density (P = 

0.008).  Territory density response was higher for pre-settlement than post-breeding 

treatment (P = 0.004).  I found pre-settlement and post-breeding conspecific cues 

influence golden-cheeked warbler habitat selection, inducing settlement in previously 

unoccupied areas, and producing aggregations within areas of similar vegetative 

characteristics.  Better understanding of social information use in habitat selection can 
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improve our understanding of species distributions, yielding more accurate predictive 

distribution models; improve our ability to predict impacts of habitat changes on habitat 

use, survival, reproduction, and ultimately fitness; and provide a potential tool for 

attracting individuals to restored or managed sites. 
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INTRODUCTION 

 

 Wildlife habitat relationships are among the most intensively studied topics in 

ecology because understanding relationships between habitat and species occurrence, 

abundance, and distribution is important to both ecological theory and conservation and 

management efforts (Manly et al. 2002, Barry and Elith 2006, Guisan et al. 2006, 

Morrison et al. 2006).  A species distribution appears to be the product of the 

hierarchical behavioral decision process of habitat selection (Hilden 1965, Block and 

Brennan 1993, Jones 2001, Dall et al. 2005).  Organisms can use a variety of information 

to make habitat selection decisions, though most empirical and theoretical research on 

habitat selection has focused on vegetative, geologic, and geomorphic habitat 

characteristics (Grinnell 1917, Kendeigh 1945, Rosenzweig 1991, DeBoer and Diamond 

2006).  Research and theory addressing the role of inter and intra-specific behavioral 

interactions remains largely focused on negative density dependence and exploitative 

resource competition (Fretwell and Lucas 1970, Connell 1983, Dodds 1997; but see 

Darling 1952), though some ecologists have suggested an undue emphasis on the role of 

competition in explaining species distributions and habitat selection (Brawn et al 1987, 

Bertness and Callaway 1994, Gross 2008).   

 Positive interactions can play a role in habitat selection; for example, bird song is  

____________
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typically considered a behavior used for competitive exclusion or mate attraction (Falls 

1992), but conspecific song can also function as a source of information for habitat 

selection that can attract conspecific males to an area (Doligez et al 2004b, Araujo and 

Guisan 2006, Hahn and Silverman 2006).  Accurately identifying the information 

organisms use to make habitat selection decisions at various spatial scales (e.g., 

landscape, patch, territory) is necessary for understanding resulting distributions and the 

fitness consequences of habitat selection decisions (Jones 2001, Morris, 2003, 

Rodenhouse et al. 2003).  Habitat selection behaviors can influence parameters such as 

adult survival, mating success, and reproductive success which, theoretically, can 

influence fitness (sensu Begon et al 2005, Alcock 2008, Dugatkin 2009). 

 Species distributions are constrained by physical and physiological limitations and 

innate evolutionary templates that drive coarse, first-order selection of a geographic 

region and vegetation type (Southwood 1977, Johnson 1980).  Individuals can then use 

information from personal experience and from sampling of habitat to make selection 

decisions among sites within the range of potential habitat (Doliguez et al 1999, Danchin 

et al 2004, Seppanen 2007).  For songbirds, information from personal experience can 

include previous success or failure at territory establishment, pairing, mating, nesting, 

and fledging young in previous breeding seasons; previous encounters with predators or 

food resources; and natal experience for second-year birds (Greenwood and Harvey 

1982, Bollinger and Gavin 1989, Hoover 2003).  Sampling potential sites can provide 

information about vegetation species and structure (Chalfoun and Martin 2007), 

predators (Fontaine and Martin 2006), food resources (Orians and Wittenberger 1991), 
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and presence of conspecifics and heterospecifics (Fletcher 2007, Ahlering et al 2006).  

Individuals in several taxa use inadvertent social information, auditory, visual, or 

chemical location cues from conspecifics or heterospecifics in habitat selection (Stamps 

1988, Monkkonen et al. 1990; Nocera et al. 2006, Donahue 2006, Hahn and Silverman 

2007).  Location cues can provide information about local habitat quality with varying 

reliability (Van Horne 1983, Valone 1989, Clark and Mangel 1984, Danchin et al. 2001).  

Alternatively, presence of conspecifics may neither provide nor be used for information 

about habitat quality but simply serve as a cue by which species can form aggregations 

that confer positive density-dependent benefits (Allee 1927, Stephens et al 1999, 

Courchamp et al 2009). 

 A bird with complete, perfect sampling information about all characteristics of all 

potential sites can make decisions that optimize both short-term survival and 

reproduction, and ultimately, lifetime fitness, but perfect information is rarely obtainable 

(Arlt and Part 2007, Seppanen et al 2007).  Migratory bird species selecting breeding 

habitat are often constrained by a short breeding season, and may need to select a 

breeding site and establish a territory quickly.  Sampling thoroughly is energetically and 

temporally costly and inefficient (Lima and Zollner 1996, Boulinier and Danchin 1997).  

Information about characteristics of a site that can affect reproductive success, including 

primary nest predators and food resources, may not be spatially or temporally detectable 

at the time when the bird makes a selection decision (Hilden 1965, Orians and 

Wittenberger 1991, Dall et al 2005).  Conspecific location cues may be an efficient 

source of information for habitat selection decisions (Forbes and Kaiser 1994, Danchin 
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et al. 2001).  In habitats that vary unpredictably over space and time or where sampling 

information about food or predators is not readily accessible to an arriving migrant bird, 

the presence of conspecifics may be sufficiently or occasionally reliable enough to allow 

species to select profitable habitats during at least some of their breeding seasons to 

optimize fitness over the course of their lifetime (Clark and Mangel 1984). 

 Conspecific location cues detected during different temporal periods can provide 

different information content, with varying relative reliability and influence on decision-

making.  For migratory birds, particularly those in which older males arrive first to 

breeding grounds and show fidelity to sites where they had previous success, it is 

plausible that presence or abundance of conspecific males during the early breeding 

period may provide information indicating suitable or high-quality habitat areas for less 

experienced second-year males arriving later (Nocccera et al 2006).  However, for many 

bird species, reproductive success at some occupied sites is low, some birds occupy poor 

habitat, and thus the presence of conspecifics in an area at the start of the breeding 

season is not always a reliable indicator of habitat quality (Arlt and Part 2007).  For 

species that exhibit site fidelity at least some of the time even when unsuccessful in 

previous years, presence of after-second-year males at the start of the breeding season 

may not reliably indicate high-quality habitat (Bollinger and Gavin 1989, Pulliam and 

Danielson 1991, Sedgwick 2004).   

 Birds can also prospect neighboring territories during or after breeding for public 

information about the presence and reproductive success (e.g., presence, number, or 

condition of fledglings) of conspecifics for use in selection decisions in subsequent 
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breeding years (Doligez et al. 1999, 2002, 2004a; Betts et al. 2008).  Black-throated blue 

warblers (Dendrioca caerulescens) were found to use conspecific vocalizations detected 

during post-breeding prospecting to select territory locations in the subsequent year, 

including low-quality habitat areas (Betts et al. 2008).  Thus, conspecific location cues 

observed during post-breeding prospecting may be more closely associated with actual 

performance measures (e.g., successful territory establishment, pairing success, or 

nesting) of conspecifics than simply presence of conspecifics at the start of a breeding 

season.  Even presence of adult males in an area at the end of a breeding season may 

indicate the area was suitable enough to be occupied for the duration of the breeding 

season even if fledglings were not produced (Betts et al. 2008).  However, post-breeding 

information may be temporally unreliable if habitat quality varies between years such 

that reliable signals of quality from one breeding season may not be correlated closely or 

at all to the quality of the habitat in the subsequent breeding season.  Thus, uncertainty 

exists on the reliability of social cues for making habitat selection decisions.   

 In recent research, conspecifics location cues have primarily been thought of as 

potential source of information about habitat quality.  Research addressing the influence 

of conspecific cues across varying habitat conditions has been limited and has focused 

primarily on post-breeding cues.  Research has not addressed outcomes of conspecific 

cue use for pre-settlement or post-breeding social cues, in terms of mating success and 

reproductive success that can theoretically influence fitness.  Neither theory nor research 

has addressed presence, prevalence, and potential fitness impacts of using unreliable 

cues.  If conspecific cues are frequently unreliable and use of unreliable cues leads to 
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deleterious fitness effects, we might not expect they serve primarily as indicators of 

habitat quality.  Attraction to conspecifics cues may serve as a means to recruit 

conspecifics to an area to increase conspecifics densities and to form aggregations that 

confer positive density-dependent benefits (Courchamp et al 2008, Courchamp et al 

2009, Brashares et al 2010, Gaston et al 2010).  Aggregating in groups can provide 

benefits including group vigilance against predators, predation dilution, increased 

foraging success, increased probability of mating, and increased opportunity for extra-

pair copulation (Forsman et al. 2002, Kokko and Rankin 2006).   

 Habitat selection decisions are often assumed to be adaptive (Jones 2001). But 

attraction to conspecific cues may be more influential in decision making than other 

habitat conditions, leading individuals to select suboptimal sites to be adjacent to 

conspecifics (Hilden 1965, Arlt and Part 2007).  In systems where changes in habitat 

conditions have rendered once-reliable cues now misleading, individuals may 

inadvertently select sites that lead to poor short-term success and ultimately poor 

lifetime fitness (Schlaepfer et al. 2002).  Investigating the use of conspecific location 

cues and the fitness consequences of these decisions is critical to predicting and 

understanding the potential impacts of positive and negative changes in habitat 

characteristics and habitat quality for species that use conspecific location cues for 

habitat selection (Fletcher 2006). 

 Although research on habitat use and predictive habitat modeling has been 

conducted for the federally-endangered golden-cheeked warbler (Dendroica 

chrysoparia; hereafter ―warbler‖) to inform management for the recovery of the species 
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(DeBoer and Diamond 2006), this research has not addressed the influence of 

conspecific interactions in habitat selection and consequent effects on distribution and 

habitat use (Campomizzi et al. 2008).  Attraction to conspecifics can influence the 

spatial distribution of warblers and other species within available habitat, leading to 

clumped or aggregated distributions within available habitat (Clark and Evans 1954, 

Augustin et al. 1996, 1998; Donahue, 2006) and may lead to unoccupied sites with 

suitable habitat.  Identifying aggregated distributions and understanding the underlying 

mechanisms will improve understanding of species distributions in relation to population 

size and amount of available habitat, create more accurate predictive habitat models 

(Augustin et al. 1996, 1998; Lichstein 2002) and make appropriate management 

decisions.  Additionally, for species that show attraction to conspecifics in habitat 

selection, simulated conspecific cues may provide a tool for attracting individuals to 

restored or managed sites with suitable habitat for that species (Ahlering and Faaborg 

2006, Hahn and Silverman 2007). 

 I conducted 3 replicated, randomized manipulative field experiments to: 1) 

investigate the use of conspecific location cues by the warbler, 2) examine the relative 

influence of conspecifics cues across a range of habitat vegetation conditions, 3) 

compare the influence of cues present at warbler arrival and settlement and those present 

during the post-breeding period, 4) examine mating and reproductive outcomes related 

to apparent use of conspecifics cues for settlement decisions. 
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STUDY AREA 

 The study region was located in east-central Texas, in the Cross Timbers and 

Southern Tallgrass Prairies ecoregion of the Edwards Plateau (Griffith et al. 2004) in 

Coryell, Hamilton, Bosque, and Bell counties, within the Leon and Bosque River 

watersheds, including 19 subwatersheds.  The majority of land in the study region is 

privately owned; about 88% of the land in Coryell County is used for farming or 

ranching (U. S. Census Bureau 2005).  I located sample units on study sites surveyed in 

2005–2008 during previous presence-absence surveys of 33 properties within a 140,000 

ha area study region (Collier et al. 2010).  Vegetation in this region included improved 

or non-native pasture, grassland, mid-successional mixed woody vegetation, and mature 

oak-juniper woodland (Quercus spp. - Juniperus asheii).  Sample units were located in 

the woodland and mixed woodland-shrubland habitat types.  Woodlands were 

characterized by oak species including Texas oak (Quercus buckleyi), post oak (Quercus 

stellata), live oak (Quercus virginiana), and shin oak (Quercus sinuata).  Elevation 

ranged from 200-500 m.   
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METHODS 

 I conducted 3 replicated, randomized manipulative field experiments to investigate 

use of conspecific location cues by the warbler and to compare warbler response to cues 

present during different time periods and habitat characteristics as detailed below.  I used 

broadcast of conspecifics vocalizations following the methods described below to 

simulate conspecifics location cues.  In 2008, I conducted experiment 1 to test 

hypotheses regarding warbler use of pre-settlement conspecific location cues to select 

territories within known suitable habitat and reproductive consequences of response to 

conspecifics location cues.  In 2009, I conducted experiment 2 to test hypotheses 

regarding warbler use of pre-settlement conspecific cues across a range of woodland 

canopy cover, considered important for habitat quality, as described below.  In 2009- 

2010, I conducted experiment 3 to test hypotheses regarding warbler use of post-

breeding conspecific cues across a range of woodland canopy cover.  I sampled in 27 

pairs of sample units during the 3 years of the study: 5 in 2008, 11 in 2009, and 11 in 

2010.   

Description of vocalization broadcast methods for the 3 experiments 

 To simulate conspecifics vocalizations for all 3 experiments, I used 3 broadcast 

stations placed 20-30m apart to simulate multiple territorial individuals in the center of 

the treatment sample unit area and to ensure that at least 2 broadcast stations were 

functioning at any time in the event of equipment failure at 1 of the broadcast stations.  

Broadcast stations consisted of a 36-cm × 24-cm × 16-cm lidded plastic box with drilled 

holes for sound to broadcast containing: 1 rechargeable 12-V direct current (DC) 12-A 
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battery; 1 programmable digital timer; 1 portable compact disk (CD) player; 1 small, 

200mW amplified speaker; 1audio cable with a ground loop isolator; and 2 power 

converters, 2 socket adapters, and 5 jumper wires to convert power and connect from the 

battery to the electronic devices (Farrell and Campomizzi 2011).  Broadcast stations 

played a CD with one of several versions of a loop of warbler songs, calls, and periods 

of quiet to simulate typical warbler territorial male vocalizations from 06:00–11:00 daily 

during the experimental period.  For experiments 1 and 2, I broadcasted vocalizations 2 

weeks prior to expected bird arrival and for 4 weeks following arrival of the first male 

warblers.  For experiment 3 broadcast vocalizations also included fledgling calls, and 

were broadcast beginning when the first warbler fledglings were observed in the study 

area, 15 May, until most warblers appeared to have left study sites on 8 August (pers. 

obs.).   

 I produced vocalization CDs using several audio files of warbler vocalizations 

publically available on the internet, as well as our own recordings and mixed tracks 

using free audio editing software (Audacity® Version 1.2.6, 

http://audacity.sourceforge.net, accessed 1 Feb 2008).  In 2008, I observed warblers 

counter-singing with simulated song broadcasts indicating that the simulations had the 

desired effect, in that warblers perceive the simulated song as another male conspecific.  

I placed broadcast units in trees or tall shrubs and secured the units to branches with duct 

tape.  I visited broadcast units at least twice per week to ensure proper functioning and to 

change batteries.  Control sites did not have broadcast stations because I assumed the 

presence of the station did not influence warbler behavior. Additionally, I did not use 
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broadcast of non-conspecific song or other sounds, to avoid potential confounding 

effects of response to heterospecific songs or anthropogenic sounds (Monkkonen et al. 

1990, Nocera et al. 2006).   

General sampling design for the 3 experiments 

 I used paired sample units and randomly assigned treatment to one of each pair of 

points.  I established 250-m-radius circular sample units around treatment or control 

center points using ArcMap™ to serve as sample units within which I measured all 

response variables.  A 250-m radius encompassed the approximate distance at which 

sound from the broadcast treatment units was to be audible and elicit response (Naguib 

1996, Forman 2000); I confirmed that while some minor variation existed due in part to 

some variation in vegetation cover characteristics, sound attenuated at or near 250m, by 

listening for broadcast sound every 50 m at each of the 5 sites treatment sample units. 

Description of response variables for all 3 experiments 

 I measured the response variables territory density, pairing success, and fledging 

success within each 250-m radius sample unit for experiment 1 and 2, and measured 

territory density only for experiment 3.  I conducted territory spot-mapping (Bibby 1992, 

Shankar Raman 2003, Probst et al. 2005) in each sample patch ≥1 time per week from 

the time of the first male warbler arrival in the study region to 8 weeks after, 

approximately 15 March to 15 May.  I recorded ≥3 sequential GPS locations of singing 

males, females, or pairs observed at each territory visit and delineated territories with 

≥15 points taken on at least 3 visits to the territory using minimum convex polygons to 

delineate territory polygons using Hawth‘s Tools (Beyer 2004) in ArcMap™.   
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 I calculated territory density as number of territories within each 250-m radius 

buffer divided by the total woodland patch area within the 250-m radius buffer, 

excluding from the calculation area comprised of grassland, pasture, road, or other non-

woodland habitat.  I surveyed 1 time per week for 1-hr in each territory using a modified 

Vickery method (Vickery et al 1992, Christoferson and Morrison 2001, Butcher et al. 

2010) to determine pairing status and whether fledglings were present.  I considered a 

territory productive if ≥1 dependent fledgling was detected in the territory with one or 

both of the adults.  I describe analyses specific to each experiment below.  Additionally, 

I summarized territory density data for the 3 experiments combined, to explore the 

generalized pattern of territory density response to conspecific location cues for territory 

selection.   

Experiment 1: Use of pre-settlement conspecifics cues within suitable habitat  

 I conducted a manipulative experiment to determine if warblers use conspecific 

location cues to select territories within patches of suitable habitat that were previously 

occupied by warblers, and whether reproductive outcomes varied between treated and 

control or as a result of consequent territory density.  I tested the following hypotheses: 

1a.  Hypothesis.  Density of warbler territories will be greater in the treated sample unit 

than control unit of each pair of sample units. 

1b.  Hypothesis.  Percent of territories successfully paired will be higher in the treatment 

units than in control units of each pair of sample units. 

1c.  Hypothesis.  Percent of territories successfully fledging ≥1 young will be higher in 

the treatment units than in control units of each pair of sample units. 
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1d.  Hypothesis.  Pairing success and fledging success are positively correlated with 

territory density. 

 Site selection — In 2008, I identified patches of oak-juniper woodland known to be 

occupied by warblers where pre-treatment warbler territory data was collected in 2006 

and 2007 (M. L. Morrison unpublished data, Butcher et al. 2010).  Among these I 

identified patches with woodland cover considered optimal warbler habitat (≥75% 

woodland cover; Texas Parks and Wildlife 2003, DeBoer and Diamond 2006) by 

running an unsupervised classification to estimate woody canopy cover using Spatial 

Analyst in ArcMap™ (ESRI® 2005, Redlands, California, USA).  Patches varied in size 

so I limited study patches to those large enough to contain at least 4 warbler territories, a 

minimum of 8 ha based on average territory size reported by Ladd and Gass (1999).  

This minimum patch size excluded patches with low probability of occupancy (Butcher 

et al. 2010) and those too small to contain several territories and enable any experimental 

effect to be detectable between treatment and control unit.   

 Patches varied in relative deciduous- juniper (Juniperus ashei) composition, so I 

excluded monotypic stands and selected patches with at least 10% deciduous or juniper 

component to meet Texas Parks and Wildlife (2003) criteria for suitability for warblers.  

I randomly selected 5 of the patches that met the aforementioned criteria.  I placed both 

sample units within one patch for this experiment.  I systematically placed 2 points ≥500 

m apart within the patch to ensure treatment and control areas did not overlap so that 

responses measured in each were independent.  I randomly assigned treatment to one of 

each pair of points.   
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 Analysis — I conducted descriptive statistics and plotted data to explore presence 

and magnitude of effects for all hypotheses.  I was unable to find any literature or 

generate any reasoning based on theory or existing data indicating a difference in 

territory density that would result in biologically relevant implications so I considered a 

difference of 0.05 territories per hectare, or 1 additional territory per 250-m sample unit 

of woodland, between treatment and control as an a priori effect size I was willing to 

accept given some sites would have few territories.   

 I used paired sample Wilcoxon sign-rank tests (Zar 1999:538–539) to test 

hypotheses 1a-c, to for difference in the territory density, pairing success, and fledging 

success between paired control and treatment locations.  I considered a 10% difference 

in fledging success as a biologically significant effect size, based on previous research 

suggesting that a difference in reproduction of 10% may have important consequences 

for population level breeding success, recruitment, and population dynamics (Porneluzi 

and Faaborg1999, Powell et al. 1999).  I used a Spearman‘s rank correlation (Zar 

1999:395–398) to test hypothesis 1d and 1e to determine if pairing and fledging success 

increased with increasing territory density.  All analyses were conducted using SPSS 

(SPSS for Windows, Version 15.0.0. SPSS Inc. 2006. Chicago, Illinois, USA.) and R 

statistical software (R Development Core Team, R Version 2.11.1. 2010. R Foundation 

for Statistical Computing. Vienna, Austria.). 
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Experiment 2: Use of pre-settlement conspecifics cues across range of habitat  

 I conducted a manipulative experiment to investigate the relative influence of 

conspecific cues and habitat vegetation characteristics by determining if warblers will 

settle in response to conspecific songs in a range of canopy cover considered optimal to 

marginal or poor habitat based on Texas Parks and Wildlife habitat guidelines (see 

below; Campbell 1996, Texas Parks and Wildlife 2003), and whether reproductive 

outcomes vary between treated and control, as a result of consequent territory density, 

and with canopy cover.  I tested the following hypotheses: 

2a.  Hypothesis.  Density of warbler territories will be greater in the treated sample unit 

than control unit of each pair of sample units. 

2b.  Hypothesis.  Difference in territory density between treatment and control will 

decrease with decreasing percent woodland canopy cover. 

2c.  Hypothesis.  Percent of territories successfully paired will be higher in the treatment 

units than in control units of each pair of sample units. 

2d.  Hypothesis.  Percent of territories successfully fledging ≥1 young will be higher in 

the treatment units than in control units of each pair of sample units. 

2e.  Hypothesis.  If differences are observed as stated in hypothesis 2c and 2d, I 

hypothesize that pairing success and fledging success are positively correlated with 

territory density. 

2f.  Hypothesis.  Difference in territory density between treatment and control will 

decrease with decreasing percent woodland canopy cover. 
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 Site selection — In 2009, I used the same criteria for patch size and tree species 

composition described above for experiment 1 site selection.  However, for this 

experiment, I did not require that sample units were placed within patches that were 

known to be occupied by warblers in previous years.  I identified patches with woodland 

cover within the study region using the 2009 National Land Cover Dataset [NLCD] from 

the United States Geological Survey [USGS].  Texas Parks and Wildlife guidelines 

suggest that warblers can occur in sites with 35–100% woodland canopy cover, with 

areas < 35% unlikely to be occupied and patches with 50–100% canopy cover are highly 

likely to be occupied and additional data from the study region suggests that in areas 

with > 75 % canopy cover, probability of occupancy approaches 1, but is lower for areas 

with cover from ≈50–75% (DeBoer and Diamond 2006, M. L. Morrison unpublished 

data).  Additionally, TPWD guidelines suggest that ―marginal‖ habitat with low canopy 

cover adjacent or within 300m of high canopy cover areas may be occupied due to 

proximity, but this has not been empirically tested nor has any mechanism been 

described (Texas Parks and Wildlife 2003).   

 I ran an unsupervised classification using Spatial Analyst in ArcMap™ to identify 

patches of > 75 % canopy cover woodland with adjacent woodland within ≤ 300m in 2 

categories of 35–50%, and 50–75%.  Additionally, because research on effects of 

anthropogenic noise suggest that sounds and its concurrent effects attenuate within 

≈300m (Forman 2000, M. L. Morrison unpublished data), placement within ≤ 300m will 

enable song broadcasts to be within audible distance from the > 75 % canopy cover 

woodland area.  I systematically selected 6 pairs of sample sites for each of the 2 canopy 
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categories, with pairing based on the continuous canopy cover values of each site.  In 

some cases, both sample units of a pair fit and were placed with one patch, so I 

systematically placed 2 points ≥500 m apart within the patch to ensure no overlap in 

treatment and control 250-m buffer area.  In cases where paired sample units were in 

different patches, I placed points systematically within each site to maximize the 

targeted woodland area (<35%, 35–50%, and 50–75%) within the sample unit.  I 

randomly assigned treatment to one of each pair of points.  I had to discontinue sampling 

in 1 pair of sample units in 2009 due to a change in access.   

 Analysis — I conducted analyses as described for experiment 1. I used descriptive 

statistics and plotted data to explore presence and magnitude of effects for all 

hypotheses.  I used paired sample Wilcoxon sign-rank tests (Zar 1999:538–539) to test 

hypothesis 2a-d.  I used a Spearman‘s rank correlation (Zar 1999:395–398) to test 

hypothesis 2d and 2e.  I used scatter plots to explore hypotheses 2b and 2f, to determine 

if any relationship between the magnitude of difference between treatment and control 

units decreased with decreasing canopy cover. 

Experiment 3: Use of post-breeding conspecifics cues across range of habitat  

 I conducted a manipulative experiment to determine if warblers use conspecific 

information (i.e., conspecific song and fledgling calls) gathered during post-breeding 

prospecting of neighboring territories to select territories in the subsequent year in a 

range of canopy cover considered optimal habitat to marginal or poor, based on Texas 

Parks and Wildlife habitat guidelines (Campbell 1996, Texas Parks and Wildlife 2003).  

I tested the following hypotheses:  



18 

 

3a.  Hypothesis 3a.  Density of warbler territories will be greater in the treated sample 

unit than control unit of each pair of sample units. 

3b.  Hypothesis.  Difference in territory density between treatment and control will 

decrease with decreasing percent woodland canopy cover. 

3c.  Hypothesis.  Difference in territory density between treatment and control will be 

greater in response to the pre-settlement conspecific cue treatment than for the post-

breeding conspecifics cue treatment. 

 Site selection — For experiment 3, I used the same criteria and methods for 

selection of potential sampling sites as described above for experiment 2.  From among 

the sites, I identified those where surveys in 2006-2009 did not detect warblers or 

detected warblers only on early survey visits during preliminary migrant arrival but did 

not continue to be occupied during subsequent survey visits.  I systematically selected 6 

pairs of sample sites for each of the 2 canopy categories.  I established 250-m-radius 

buffers around treatment or control center points following the same methods described 

for experiment 1 and 2.  I had to discontinue sampling in 1 pair of sample units due to a 

change in access. 

 Analysis — I used descriptive statistics and plotted data to explore presence and 

magnitude of effects for all hypotheses.  I used paired sample Wilcoxon sign-rank tests 

(Zar 1999:538–539) to test hypothesis 3a.  I used a scatter plot to explore hypothesis 3b, 

to determine if any relationship between the magnitude of difference in territory density 

between treatment and control units decreased with decreasing canopy cover.  For 
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hypothesis 3c, I used box plots to explore the data and conducted a Mann-Whitney U 

test (Mann and Whitney 1947).   
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RESULTS 

 For all 3 experiments combined, territory density was >4 times higher in treated 

sample units than control units (mean difference between treatment and control for each 

pair of sample units = 0.27 ± 0.04 territories per ha; paired samples Wilcoxon sign rank 

1-tailed test, df = 27, V = 318, p <. 001).  Twenty-three of the 27 pairs of sample units 

showed higher territory density in treated units than controls, an additional 2 of 27 had 

no territories in treatment or control units, and 2 of 27 had higher territory density in 

control than treated units. 

Experiment 1: Use of pre-settlement conspecifics cues within suitable habitat  

 Territory density was 2 to 3 times higher in treatment units than controls in each 

pair (Fig. 1; mean difference between treatment and control for each pair = 0.25 ± 0.04; 

paired samples Wilcoxon sign rank 1-tailed test, df = 5, V = 15, p = 0.02).  Density of 

warbler territories was overall 4.1 times greater in treatments than controls (mean 

treatment density = 0.33 ± 0.08 territories per ha, mean control density = 0.08± 0.05 

territories per ha).   
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Figure 1.  Territory density of golden-cheeked warblers in 5 pairs of experimental 
conspecific vocalization treatment and control sample units in > 75% canopy cover oak-
juniper woodland patches in east-central Texas in 2008. 
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 Mean proportion of territorial males that successfully paired was twice as high in 

treatment sample units as in control sample units (Fig. 2; mean proportion of males 

pairing in treatment units = 0.29 ± 0.18, mean proportion of males pairing in control 

units = 0.13 ± 0.13, paired samples Wilcoxon sign rank 1-tailed test, df = 5, V = 2, p = 

0.33).  Proportion of paired territories successfully fledging young was also twice as 

high in treatment than control sample units (mean proportion of pairs fledging ≥1 young 

in treatment units = 0.40 ± 0.24, mean proportion of pairs fledging ≥1 young in control 

units = 0.20 ± 0.20, paired samples Wilcoxon sign rank 1-tailed test, df = 5, V = 2, p = 

0.16).  Pairing success of males and fledging success of pairs showed evidence of a 

positive relationship with territory density (Fig. 3.; pairing success and territory density: 

Spearman‘s rho = 0.55, p = 0.05; Fig. 4.; fledging success of paired males and territory 

density: Spearman‘s rho 0.58, p = 0.04).  But it should be noted that in 3 of 5 sample 

pairs, no males successfully paired in either treatment or control units, thus fledging 

success in these units was also zero.   
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Figure 2.  Proportion of territorial male golden-cheeked warblers that successfully 
paired with females in the 5 experimental conspecific vocalization treatment and control 
sample units in > 75% canopy cover oak-juniper woodland patches in east-central Texas 
in 2008. 
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Figure 3.  Proportion of territorial male golden-cheeked warblers that successfully 
formed pairs plotted against territory density in 5 pairs of experimental conspecific 
vocalization treatment and control sample units in > 75% canopy cover oak-juniper 
woodland patches in east-central Texas in 2008. 
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Figure 4.  Proportion of golden-cheeked warbler pairs that successfully fledged young 
plotted against territory density in 5 pairs of experimental conspecific vocalization 
treatment and control sample units in > 75% canopy cover oak-juniper woodland patches 
in east-central Texas in 2008. 
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Experiment 2: Use of pre-settlement conspecifics cues across range of habitat  

 Density of warbler territories was greater in treatment sample units in 10 of 11pairs 

of sample units (Fig. 5; mean treatment density = 0.49 ± 0.06 territories per ha, mean 

control density = 0.1 ± 0.02 territories per ha).  Territory density was an average of 5 

times higher in treatment units than controls (Fig. 5; mean difference between treatment 

and control for each pair = 0.39 ± 0.05; paired samples Wilcoxon sign rank 1-tailed test, 

df = 11, V = 65, p = 0.002).  The magnitude of difference in territory density between 

treatment and control units did not show a relationship with canopy cover (Fig 6; 

Spearman‘s rho = -0.064, p = .426), thus territory density was consistently higher in 

treatment units than controls regardless of percent canopy cover. 
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Figure 5.  Territory density of golden-cheeked warblers in 11 pairs of experimental 
conspecific vocalization treatment and control sample units across a range of 25 to 70% 
canopy cover of oak-juniper woodland patches in east-central Texas in 2009. 
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Figure 6.  Difference in territory density of golden-cheeked warblers between treatment 
and control sample units in 11 pairs of experimental sample units plotted against percent 
canopy cover of oak-juniper woodland patches in east-central Texas in 2009. 
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 Mean proportion of territorial males that successfully paired was 20% higher for 

treatment sample units than control sample units (mean proportion of males pairing in 

treatment units = 0.49 ± 0.07, mean proportion of males pairing in control units = 0.40 ± 

0.13, paired samples Wilcoxon sign rank 1-tailed test, df = 11, V = 35, p = 0.22), but the 

difference was not statistically significant.  Proportion of paired territories that 

successfully fledged young was also 20% higher for treatment sample units than control 

sample units (mean proportion of pairs fledging ≥1 young in treatment units = 0.49 ± 

0.19, mean proportion of pairs fledging ≥1 young in control units = 0.40 ± 0.15, paired 

samples Wilcoxon sign rank 1-tailed test, df = 5, V = 2, p = 0.37), but the difference was 

not statistically significant.  Pairing success of males was positively correlated with 

territory density (Fig. 7.; Spearman‘s rho = 0.506, p = 0.008); the correlation between 

pairing success and territory density suggested increasing pairing success with 

increasing density, perhaps above a density threshold of around 0.02 territories per 

hectare.  Fledging success of paired males showed a statistical correlation with territory 

density (Spearman‘s rho 0.422, p = 0.03), but a scatterplot of data did not appear to 

suggest a clear pattern of correlation (Fig 8.). 
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Figure 7.  Proportion of territorial male golden-cheeked warblers that successfully 
formed pairs plotted against territory density in 11 pairs of experimental conspecific 
vocalization treatment and control sample units across a range of canopy cover oak-
juniper woodland patches in east-central Texas in 2009. 
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Figure 8.  Proportion of golden-cheeked warbler pairs that successfully fledged young 
plotted against territory density in 11 pairs of experimental conspecific vocalization 
treatment and control sample units across a range of canopy cover oak-juniper woodland 
patches in east-central Texas in 2009. 
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Experiment 3: Use of post-breeding conspecifics cues across range of habitat  

 Density of warbler territories was greater in treatment sample units for 8 of 11 

pairs of sample units in the post-breeding cue experiment, with 2 of the remaining 3 

pairs of units having no territories in either the treatment or control (mean treatment 

density = 0.21 ± 0.06 territories per ha, mean control density = 0.06 ± 0.02 territories per 

ha).  Territory density was 3 times higher in treatment units than controls (Fig. 9; mean 

difference between treatment and control for each pair = 0.15 ± 0.05; paired samples 

Wilcoxon sign rank 1-tailed test, df = 11, V = 41, p = 0.01).  As in experiment 2, 

treatment units showed consistently higher territory densities than controls, regardless of 

percent canopy cover; magnitude of difference in territory density between treatment and 

control units did not show a relationship with canopy cover. 

 Although both pre-settlement and post-breeding conspecific cues elicited 

significant treatment responses of increased territory density in treatment units, the effect 

was significantly greater for pre-settlement treatment than for post-breeding treatment 

(Fig. 10; Mann-Whitney U 1-tailed test, W=100, p = 0.004). 
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Figure 9.  Territory density of golden-cheeked warblers in 11 pairs of experimental 
conspecific vocalization treatment and control sample units across a range of canopy 
cover oak-juniper woodland patches in east-central Texas in 2010. 
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Figure 10.  Difference in territory density of golden-cheeked warblers between 
treatment and control unit pairs and between pre-settlement and post-breeding 
conspecific vocalization treatment across a range of canopy cover oak-juniper woodland 
patches in east-central Texas in 2009 and 2010. 
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CONCLUSIONS 

 Territory density of warblers was, on average, 4 times greater in treatment than 

control sample units, supporting hypotheses 1a, 2a, and 3a.  The magnitude of effect was 

greater than I expected and was observed even within patches known to be occupied by 

warblers (M. L. Morrison unpublished data, Butcher et al. 2010, Collier et al. 2010) 

where typically in the absence of experimental treatment, all but the very first warblers 

to arrive to the area are likely to encounter some conspecifics.  We observed that for 

warblers and other breeding songbirds in the study area, males typically move around 

large areas and sing only intermittently upon initial arrival and within the first several 

days in a patch.  If males then stay in the patch for several days or more, they typically 

substantially reduce the area they move within and begin singing more consistently.  I 

suggest that conspecific vocalization behavior that may indicate the individual is not 

merely assessing the site but has selected the site and established a defined territory 

within it may be a more influential cue than conspecific vocalizations more generally in 

inducing settlement, and may also induce rapid settlement and territory establishment.  

Our broadcast treatment simulated this condition, and as additional males selected 

territories adjacent to treatment locations, the strength of this signal increased.   

 Data collected on some sample sites in experiments 1 and 2 in years prior to 

treatment suggest territory density in treatment units was higher following the 

experimental treatment than in pre-treatment years. But territory density in control units 

appeared to show a decrease following the treatment compared to pre-treatment (M. L. 

Morrison, unpublished data).  Additionally, post-treatment territory distribution in 
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control units was often characterized by large gaps in occupancy.  The spatial pattern of 

territories in the control units and commonly reported return rates for male warblers of ≥ 

40% (Peak and Lusk 2009) suggests males that previously held territories in the control 

unit area may have been drawn away from resettling in the control unit and settled in the 

treatment unit in response to the treatment.  However, I did not age males or identify 

returning individuals because capturing and banding a large proportion of the birds was 

logistically infeasible for my short-term experiments so I cannot confirm individual 

territory shifts.  Further research using conspecifics location cues with different 

characteristics, such as song frequency, spatial array of signals, or simulated density of 

individuals can help to investigate more precisely what information might be important 

for inducing settling responses.  Additionally, researchers that are able to capture, age, 

and mark individuals pre-treatment may be able to address which individuals are most 

likely to use conspecifics cues, based on age class, previous reproductive success, or 

previous territory location and to assess finer patterns of timing and spatial distribution 

of territory settlement in response to conspecific location cues. 

 The magnitude of the territory density effect did not decrease with decreasing 

canopy cover as I had predicted in hypotheses 2b and 3b.  In experiment 2, warblers 

settled in high densities in response to treatment in low canopy cover areas while 

adjacent patches of high canopy cover were also available suggesting that, at least within 

a range of vegetation characteristics, conspecifics location cues can be highly influential 

on settlement decisions in the hierarchical process of selection (Jones 2001, Dall et al. 

2005).  However, I did not test at the extremes of canopy cover characteristics, such as 
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attempting to induce settlement in grasslands with few trees or shrubs.  Nocera et al. 

(2006) found male bobolinks (Dolichonyx oryzivorus) settled in response to post-

breeding conspecifics cues in unsuitable habitat, but in most cases left the sites after 

several weeks.  However, Nocera et al. (2006) used an intermittent, rather than 

consistent, conspecific location cue treatment, and found that most poor quality sites 

settled in response to treatment were settled primarily by second-year males.   

 Theory would suggest that warblers should select habitat to sequentially fill the 

best available habitat until it reaches a saturation level at which point they may 

encounter competitive exclusion from accessing adequate resources and would then 

benefit from selecting the next best habitat area (Fretwell and Lucas 1970).  My results 

suggest that the dynamic process of territory selection may not be substantially 

influenced by competition, that suitable areas may be left unoccupied or sparsely 

occupied while immediately adjacent areas, in some cases areas typically less likely to 

be selected or those considered less suitable, are densely filled in response to 

conspecifics location cues (Campomizzi et al 2008).  Those sites in experiments 2 and 3 

which were previously known to be unoccupied were typically considered unoccupied 

due to suboptimal or poor habitat quality on the basis of low woodland canopy cover.  

Birds that settled in these sites in response to conspecifics location cues might be 

expected to perform poorly, responding to an experimentally created ecological trap 

where a signal from conspecifics was unreliable and lead to a choice of poor habitat 

(Hilden 1965, Clark and Mangel 1984, Danchin et al. 2001).   
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 However, birds who settled in areas of low canopy cover in response to treatment 

performed as well as those in higher canopy cover, in either pairing success or fledging 

success.  Increasing territory density was correlated with increasing pairing success and, 

to a lesser extent, increasing fledging success, suggesting that warblers benefit from 

aggregating.  This provides support for theory suggesting positive response to 

conspecifics cues may be, at least in part, as means for forming aggregations for species 

that exhibit positive density dependence.  In such cases, conspecifics song may not serve 

mainly as a tool for competitive exclusion (Falls 1992), but a signal for recruiting 

conspecifics to an area, as an individual may experience benefits by increasing 

recruitment of conspecifics to an area (Araujo and Guisan 2006, Hahn and Silverman 

2006).  Treatment densities were significantly greater than control densities across pairs 

of sample units with similar habitat characteristics, often within the same woodland 

patch.   

 Where density of conspecifics has been considered as an important aspect of 

habitat quality, increasing conspecifics density is often considered to negatively impact 

the quality of a site for each subsequent individual.  But our results suggest that 

increasing density of conspecifics should be considered a potentially positive component 

of habitat quality (Dodds 1988, Bertness and Callaway 1994).  As in many songbirds, 

female warblers arrive to breeding grounds after males have arrived and at least started 

to select territories.  I often observed females moving through habitat patches in groups, 

and high density concentrations of territorial males may not only provide a strong signal 

for females in search of potential mates but high density areas may also provide 
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information indicating high quality habitat areas for use in female selection.  My 

experiment may have generated stronger than expected aggregation effects, but previous 

research has suggested that warblers typically show signs of aggregating (Campomizzi et 

al. 2008) within suitable habitat and potentially across suboptimal habitat areas.  This 

may suggest that aggregations are a desirable or adaptive distribution pattern for 

warblers, for increased pairing success and perhaps for other potential components of 

fitness that I did not quantify in this study. 

 Information gathered through prospecting is theorized to provide more reliable 

information about the reproductive quality or potential of the habitat than the mere 

presence of conspecifics at the start of a breeding season (Danchin et al. 1988, Bollinger 

and Gavin 1989, Doliguez 2004, Nocera et al. 2006).  My results showed a response to 

post-breeding conspecifics cue treatment, but the magnitude of the response was 

significantly lower than for the pre-settlement treatment. Nocera et al (2006) found 

settlement responses were greater in response to treatment during the later part of the 

breeding season or post-breeding period.  As I stated previously, my treatment was 

longer-term and more consistent that that used by Nocera et al. (2006) for both pre-

settlement and post-breeding treatments, and thus it likely had a different meaning to 

receivers of the signal.  This difference may be due to several factors.  First, some 

individuals who detected post-breeding treatment cues may have experienced over-

winter mortality, thus decreasing the potential pool of responders.  Thus, the influence of 

the post-breeding signal may be as great as the pre-breeding signal, but a loss of 

potential response is incurred because fewer birds who detected the cue are available in 
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the subsequent year to select territories in response to the cue.  Further research 

considering loss of potential response due to overwinter mortality may help to accurately 

interpret the relative strength of the response to the 2 cues.  Second, the pre-settlement 

cue may be more heavily used because it is a more reliable indicator of habitat quality in 

the year it is detected.  If habitat quality in this system varies widely between years, the 

presence of conspecifics at the end of one breeding year may not relate closely to the 

expected quality of that site in the following year.  Future research comparing the 

relative influence of pre and post-breeding conspecifics location cues in systems that 

vary widely and those that are relatively consistent among years can provide information 

about whether inter-annual variation in habitat quality explains this difference in 

response to the 2 cues.  Lastly, if use of conspecifics cues is not primarily for 

information content about habitat quality, but for the purposes of establishing 

conspecific aggregations, pre-settlement cue in the same breeding year would be the 

most salient signals to use for forming aggregations and conversely, post-breeding cues 

would be relatively less relevant or useful for this application. 

 Previous research and management paradigms suggest that occupancy by warblers 

is higher with increasing canopy cover in the study region and have assumed that 

warblers select for higher canopy cover that must confer fitness benefits, and is thus 

higher quality habitat (Texas Parks and Wildlife 2003, DeBoer and Diamond 2006).  

However, our data suggests that apparent selection for relatively high canopy cover may 

instead be a vestige of the evolutionary history of the warblers and their woodland 

habitat (Hilden 1965) or tradition in habitat selection (Nocera et al 2006).  For warblers 



41 

 

and perhaps other species, the range of habitat within which they can successfully 

perform may be greater than is typically predicted based on occupancy, and occupancy 

should not be taken to necessarily imply preference or quality as defined by high 

reproductive success, survival, or other potential components of fitness (Klassen 2011).  

Particularly for species of concern, this experimental approach may provide a means for 

exploring arrange of potential habitat within which a species may be able to successfully 

reproduce, providing additional area to the known potential habitat and providing 

additional options for conservation and management.  However, changes in habitat due 

to anthropogenic or other causes can lead to habitat conditions within which birds cannot 

perform well.  In cases where information or cues about these changes is not readily 

detectable during habitat selection, such as the introduction of a significant predator that 

is not active or detectable during bird settlement, attraction to conspecifics can lead to 

continued or even increasing occupancy of non-adaptive habitat, or an ecological trap.  

Understanding how anthropogenic changes in habitat may affect habitat quality and how 

these changes may create a disjunction between cues used for selection and 

characteristics that affect survival, mating success, reproductive success, and ultimately 

fitness, particularly for species that show site fidelity and conspecifics attraction, is 

critical for avoiding creation of ecological traps. 

 Additionally, my results suggest that the dynamic process of territory selection 

may not be substantially influenced by competition, that suitable areas may be left 

unoccupied or sparsely occupied while immediately adjacent areas, in some cases areas 

typically less likely to be selected or those considered less suitable, are densely filled in 
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response to conspecifics location cues (Campomizzi et al. 2008).  Those sites in 

experiments 2 and 3 which were previously known to be unoccupied were typically 

considered unoccupied due to suboptimal or poor habitat quality on the basis of low 

woodland canopy cover.  Incorporating knowledge of positive, aggregative habitat 

selection behavior and the resulting distributions is essential for creating more accurate 

spatially-explicit predictive occupancy models and understanding species distributions 

and occupancy patterns, to accurately determine when unoccupied areas are unsuitable 

or unoccupied simply due to clustered distribution patterns. 
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