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Abstract. Advances in remotely sensed data for characterizing habitat have enabled development of

spatially explicit predictive species distribution models (SDM) that can be essential tools for management.

SDMs commonly use coarse-grain metrics, such as forest patch size or patch connectivity, over broad

spatial extents. However, species distributions are likely driven in part by local, fine-grained habitat

conditions. Conservation and management are often planned and applied locally, where coarse predictions

may be uninformative or not sufficiently precise. We investigated the integration of high-resolution LiDAR

(Light Detection and Ranging) with avian point sampling data to develop a detection-corrected occupancy

model to quantify habitat-occurrence relationships for two species with different habitats: the endangered

golden-cheeked warbler (Setophaga chrysoparia) and black-capped vireo (Vireo atricapilla) on a military

installation in central Texas. We compared occupancy models that used only the more conventional, coarse

remotely sensed metrics to models that also incorporated high-resolution LiDAR-derived metrics for

vegetation height and canopy cover, to assess their use for predicting distributions. Models including

LiDAR-derived vegetation height and canopy cover metrics were competitive for both species, and models

without LiDAR-derived vegetation height had substantially lower model weights and explanatory

strength. Area under curve estimates for the highest ranked models were high for warblers (0.864) and

moderate for vireos (0.746). Using the best supported models for each species, we predicted the occurrence

distribution for both species. The resulting predictions provide a decision support tool that enables

assessment of the status, impacts, and mitigation of impacts to endangered species habitat on the

installation due to land management and military training activities that is more standardized and accurate

than current assessment approaches based on visual gestalt of habitat and expert opinion. Additionally,

although previous species distribution models have been created for our focal species, most fail to match

the grain and extent of most management actions or include local, fine-grained metrics that influence

distributions. In contrast, we demonstrate that use of LiDAR with species occurrence data can provide

precision and resolution at a scale that is relevant ecologically and to the operational scale of most

conservation and management actions.
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INTRODUCTION

Species distribution models (SDMs) are impor-
tant tools for identifying habitats and focusing
conservation and management efforts (Guisan
and Zimmerman 2000, Austin 2007, Rodriguez et
al. 2007). Many SDMs provide general predic-
tions of distribution based on coarse-grain
metrics often over broad spatial extents (e.g.,
patch size) that can reflect coarse patterns of
habitat use and provide predictions for broad
spatial extents for a variety of conservation and
management goals (Betts et al. 2007, Collier et al.
2012). However, habitat use and resulting distri-
butions can be driven by habitat characteristics
assessed by organisms at multiple spatial extents
and grains, including fine-grained conditions
across relatively small spatial extents (Orians
and Wittenberger 1991, Meyer and Thuiller 2006,
Chalfoun and Martin 2007). Ecological research
commonly investigates the role of fine-grained
vegetation metrics over small spatial extents
when investigating responses such as territory
selection or nest site selection (Misenhelter and
Rotenberry 2000). Fine-grained metrics, such as
vegetation structure and height, are often found
to relate to species habitat use and thus may be a
useful predictor of species occurrence, but are
rarely used to predict species occurrence in a
spatially explicit manner (Cody 1981, Wiens et al.
1987, Johnson 2007). However, management is
often planned, applied, and monitored over
small spatial extents, suggesting the potential
utility of fine-grained, spatially explicit occur-
rence predictions for management planning and
decision making.

Numerous studies have investigated habitat-
occurrence relationships for the federally endan-
gered golden-cheeked warbler (Setophaga chrys-
oparia; henceforth warbler) and black-capped
vireo (Vireo atricapilla; henceforth vireo), as
habitat loss is considered a threat to population
viability for both species (Wilkins et al. 2005,
Groce et al. 2010). The breeding ranges of these
two species overlap substantially within central
Texas, but the species are associated with
distinctly different breeding habitats. Warblers
are thought to prefer mature mixed oak-juniper
(Quercus spp.-Juniperus asheii ) woodlands, with
trees ’4–6 m in height and relatively homoge-
nous closed canopy (Campbell 1996, Ladd and

Gass 1999). Vireos, on the other hand, are
thought to prefer mid-successional, mixed-spe-
cies shrub land, with vegetation ’0.5–3 m in
height, moderate percent woody cover with
substantial breaks or openings in the woody
cover, and vireo habitat is often qualitatively
described as being structurally heterogeneous
(Grzybowski 1995, Campbell 1996). Across the
landscape, warbler and vireo habitat can often be
found nearby or directly adjacent to one another
within a region (Collier et al. 2012, McFarland et
al. 2012a). In some cases, habitat that is thought
to be suitable for vireos, if left undisturbed, may
succeed into the mature woodland used by
warblers; conversely, habitat that is actively
managed for vireos may prevent succession into
potential warbler habitat. Thus, management for
these two species can sometimes be viewed as
competing, and clearly requires strategic plan-
ning if both species are to be effectively man-
aged. Most research on distributions for both
species has focused on coarse landscape metrics,
such as patch size, patch configuration, and
woody cover in the landscape scale (De Boer
and Diamond 2006, Magness et al. 2006, Collier
et al. 2012) providing a foundation for predicting
patterns of warbler distribution at coarse resolu-
tions over broad spatial extents. Efforts have
been less successful at prediction of vireo
distributions using coarse landscape metrics
(McFarland et al. 2012a, Wilsey et al. 2012).
Given the increasing threat of development
within the range of these two endangered
species; the extent of efforts to assess impacts
and implement management for conservation
and restoration; and the potential challenges of
managing for two somewhat distinct and poten-
tially competing habitat needs to maintain
sufficient habitat and populations, a need for
more precise, fine-grain predictions of occurrence
is pressing (Wilkins et al. 2005, Groce et al. 2010).

Previous studies suggest vegetation height
plays a role in nest site selection, nest success,
and foraging activity of many avian species
including the warbler and vireo (Dearborn and
Sanchez 2001, Bailey and Thompson 2007),
though there has been little research investigat-
ing vegetation height specifically in relation to
occurrence for either species. Where vegetation
height has been studied in relation to occurrence
or other avian responses, height is typically
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assessed on the ground. Thus, while studies have
long investigated statistical correlations between
vegetation height and responses of interest, the
technological capacity to estimate height remote-
ly and extrapolate statistical correlations to
generate spatially explicit predictions has not
been available until more recently (DeBoer and
Diamond 2006, McFarland et al. 2012a). Previous
studies correlating height to avian responses are
limited in their ability to be applied to manage-
ment. For example, studies documenting corre-
lation between a species occurrence and
vegetation characteristics as measured on the
ground are limited to making general recom-
mendations such as maintaining or protecting
areas that are observed to have vegetation of
appropriate height. Such studies, in the absence
of remotely sensed data with which to associate
species response, are unable to provide a
platform for remote identification of areas with
desirable characteristics or those that could be
managed and restored, broad assessment of
species distributions, and tools for strategic
management planning across a landscape or
focal area.

Remotely sensed information on vegetation
height is now available via technologies such as
LiDAR (Light Detection and Ranging; Hill and
Thomson 2005), allowing for precise, high-
resolution estimation of numerous descriptors
on surface or vegetation structure including
vegetation height, and spatially explicit extrapo-
lation of height-based predictions of species
distributions (Graf et al. 2009, Seavy et al. 2009,
Goetz et al. 2010), which can provide more
powerful, effective management tools. Effective
management requires an understanding of spe-
cies occurrence patterns at a scale and resolution
that is ecologically and practically relevant. For
example, decisions for siting development (e.g.,
road construction, transmission lines), assessing
impacts, mitigation, and management often
occur across spatial extents smaller than the
grain at which coarse models can distinguish
between high and low occupancy areas (McFar-
land et al. 2012b).

Like many military installations, our study
area on the Fort Hood military installation
provides habitat for wildlife, and management
for endangered species conservation is conduct-
ed alongside other, sometimes competing, land

uses for meeting military training needs (Tazik
and Martin 2002, Boice 2006). Fort Hood faces
increasing challenges to balance growing mili-
tary training needs with endangered species
conservation and compliance with the Endan-
gered Species Act ([ESA] 1973; Gutzwiller and
Hayden 1997, Tazik and Martin 2002). Develop-
ment projects are often small (e.g., 50 to 100 ha)
and locating development can often be adjusted
to minimize relative impact to species of concern
if the resolution of available data allows. The
installation has managed for warbler and vireo
since both species were listed in 1987 and 1990,
respectively (55 FR 53153, 52 FR 37420). To date,
planning decisions on Fort Hood have assumed
all areas identified as habitat are equivalent or
have relied on qualitative visual assessment and
expert opinion of habitat occupancy and quality,
limiting the ability to precisely assess impacts
and strategically plan. However, even data-
driven predictive models of occurrence using
coarse habitat metrics would fail to provide the
resolution needed to allow strategic management
planning and decision making, such as deter-
mining where to locate a new airstrip or training
range to minimize impacts to the species of
concern. Precise, high-resolution predictive mod-
els of warbler and vireo distribution and prob-
ability of occurrence were necessary to provide
improved decision support tools to meet opera-
tional and species conservation goals (Fuhlendorf
and Smeins 1996, Davenport et al. 2000) and
LiDAR data provided one potential tool to move
in this direction.

We developed a high-resolution species distri-
bution model for warblers and vireos on Fort
Hood military installation using a combination of
LiDAR estimation of vegetation height and
standard remotely sensed data. While we realize
LiDAR can provide a range of metrics that can
characterize vegetation structure, we wanted to
focus on metrics that had a clear foundation in
our ecological understanding of the species (i.e.,
vegetation height is thought to be important for
both species breeding season usage), were
reasonably easy to interpret to researchers and
resource managers unfamiliar with LiDAR met-
rics, and provided a starting point for exploring
the potential for using more complex structural
metrics in the future. We: (1) evaluated whether
incorporating LiDAR-derived estimates of vege-
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tation height and canopy cover would provide a
more accurate, high-resolution species distribu-
tion models than standard remotely sensed
spatial metrics alone, and (2) generated a
spatially explicit prediction of warbler and vireo
distributions as a decision support tool for
managing training and conservation goals.

METHODS

STUDY AREA

Fort Hood is located in north-central Texas,
USA, in the Cross Timbers and Texas Blackland
Prairies level III ecoregions (Griffith et al. 2004).
Ecoregions are areas with similar ecosystems and
environmental resources, delineated as spatial
units for research and management. Elevation
ranges from 180–375 m above sea level, mean
daily high temperatures during the avian breed-
ing season of March to August are 21 to 368C,
and annual rainfall averages 88 cm (National
Oceanic and Atmospheric Administration
[NOAA]). Vegetation types include pasture,
grassland, mixed woodland-shrubland, and ma-
ture oak-juniper woodland that includes several
deciduous species including Texas or Spanish
oak (Quercus buckleyi ), post oak (Q. stellata), and
blackjack oak (Q. marilandica). Woodland edges,
shrubland, and grassland matrices often include
young Ashe juniper, shin oak (Q. sinuata), redbud
(Cercis Texensis), false willow (Baccharis neglecta),
yaupon (Ilex vomitoria), and other small woody
species, forbs, and grasses. Military training
including artillery firing, dismounted and mech-
anized maneuvers, aircraft gunnery, and aviation
training are conducted across the installation.
Wildfire is the primary cause of habitat loss for
the warbler and vireo on the installation,
although brush clearing and prescribed fire is
conducted to minimize fuel loads and manage
habitat for the vireo (Grzybowski et al. 1994).
Our sampling area was the live fire region of Fort
Hood, covering about 24,000 ha of the 87,890 ha
installation (Fig. 1). Active artillery training is
conducted ’ 240 days per year and usually
includes use of all or nearly all of the 15 training
ranges, using a variety of ordinance from small
arms firing ranges to larger ordinance fired into
this area from the ground elsewhere on the
installation or from aircraft flying over the area.

Training aircraft fly over the area frequently and
Explosive Ordinance Disposal (EOD) units con-
duct periodic sweeps to locate and detonate
unexploded ordinance across the area.

Sample survey design
We identified all areas with any (.0%) woody

cover within the study area using 10 m raster
data identifying land cover classification from
the Texas Ecological Systems Classification Pro-
ject (Texas Parks and Wildlife Department 2012)
plus a 100 m buffer around the .0% woody
cover area as the sampling frame. We erred on
the side of being inclusive in the sampling frame,
not a priori restricting sampling to areas gener-
ally considered habitat for either species (Wilkins
et al. 2005, Groce et al. 2010) because recent
research indicates habitat use may differ from
previous assumptions (Pope 2011, Klassen et al.
2012, Smith et al. 2012). We generated a 3003 300
m grid of sample points initiated at a random
starting point (n ¼ 1341; Thompson 2002). Using
standard occupancy model sample size estima-
tors (MacKenzie and Royle 2005) and estimates
of probability of detection for both species
(Collier et al. 2010, McFarland et al. 2012b) and
targeting variance of the occupancy estimate at
�6%, we selected a random sample (n ¼ 453;
Fig. 2) of points. Sampling 453 points across this
area resulted in relatively high sampling intensi-
ty of approximately one point per 50 ha, which
thoroughly covered the study area. We used 100-
m fixed radius point sample surveys (Laake et al.
2011); territory sizes of 2 to 4 ha are commonly
reported for both species (Grzybowski 1995,
Ladd and Gass 1999) making the 3.14 ha sample
area biologically appropriate.

Sample survey methods
Two independent observers conducted surveys

at the same time and location (MacKenzie 2006,
Laake et al. 2011, Collier et al. 2012). For each
survey occasion, detection/non-detection histo-
ries for each sampling location were 10, 11, 01, or
00 (detected by first observer only, by both
observers, by second observer only, or not
detected, respectively; MacKenzie and Royle
2005). We visited each point at least two times
over one season with most points visited three
times, by two independent observers, represent-
ing 4–6 detection/non-detection surveys, and we

v www.esajournals.org 4 March 2013 v Volume 4(3) v Article 42

FARRELL ET AL.



assumed closure (i.e., no immigration or emigra-
tion at survey points) within the season (Mac-
Kenzie 2006). This assumption is reasonable for
these species during the breeding season because
both species are territorial. Previous research and
monitoring has shown that once individuals
establish territories early in the breeding season,
the territories remain spatially stable throughout

the duration of the season (Lackey et al. 2011,

Marshall 2011, Pope 2011, Campomizzi et al.

2012, Farrell et al. 2012, Smith et al. 2012).

Observers were randomly allocated to sample

locations. Points were sampled from 0600-1200

from 19 March to 16 June 2011 and all repeated

surveys were separated by �9 days.

Fig. 1. Texas map with location of Fort Hood military installation in central Texas and zoomed-in view of the

Fort Hood military installation with the Live Fire area and live fire training ranges delineated in red, which was

surveyed during 2011.
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Remote habitat variable estimation

We used the most current available remotely

sensed data for the study area. LiDAR data was

acquired 21 to 25 March 2009 (Optimal Geo-

matics); these data were used to construct the

digital surface model (DSM; Applied Imagery

Quick Terrain Modeler, Silver Spring, Maryland)

for vegetation canopy and the bare earth model

([BEM]; Optimal Geomatics) for the ground level,

which together were used to estimate canopy

height. Aerial flight elevation was 2200 m above

ground level, providing a spot size of 62 cm

diameter or 31 cm radius within which each

point was located. Average horizontal accuracy

Fig. 2. Point sample locations within the live fire section of the Fort Hood military installation. Points represent

the 453 point sample locations sampled in March–July 2011. Color and shape indicate detections at each point:

triangle¼ only warblers were detected, circle¼ only vireos were detected, cross¼ both warbler and vireo were

detected, open square with ‘‘X’’ ¼ neither species detected.
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was 1/2000 of the flight height giving a horizontal
tolerance of ,1.1 m. Swath overlap was approx-
imately 30%. Point density was 0.612 returns/m2.
Fundamental vertical accuracy (i.e., in open
areas) was 0.47 m and consolidated vertical
accuracy (i.e., open terrain, low and high grass,
and shrubs and trees) was 0.39 m using root
mean squared error (RMSE) 3 1.96. Validation
points were used to calculate a consolidated
vertical difference of 0.07 m.

We converted first-return LiDAR points (i.e.,
top heights of the vegetation; Means et al. 1999)
into a continuous DSM; we used first returns
because we were primarily interested in vegeta-
tion height, rather than shape or multi-level
structure for this study. We used the BEM model
created by Optimal Geomatics to meet the
National Map Accuracy Standards ([NMAS]
United States Geological Survey) standards for
2 m contours. We set cell resolution for the DSM
to 2 m to match the resolution of the BEM. Using
a contiguous DSM and BEM we derived the
canopy height model (CHM) by subtracting BEM
from DSM (Arc10, ESRI, Redlands, California;
Lefsky et al. 2002, Popescu et al. 2002). Height
values �35 m were excluded as likely due to
errors or returns from non-vegetation sources,
such as manmade infrastructure, because trees
are typically substantially ,35 m in the study
area. Using the resulting canopy height layer we
calculated mean, minimum, maximum, and
standard deviation for height within each 100-
m point radius.

We used a 2008 aircraft-flown, high-resolu-
tion, 3-band, color-infrared SID image taken
during leaf-off period and leaf-on imagery to
create a layer distinguishing deciduous and
evergreen tree species. We resized the 0.35 m
resolution to 2 m to match resolution of the
LiDAR data. Because we had comprehensive,
high-resolution imagery, we did not need to do
any additional processing (e.g., smoothing, gap-
filling, co-registering the imagery and LiDAR).
We classified the image using a k-means
unsupervised classification with 50 iterations
and no threshold value (ITT Visual Information
Solutions ENVI 4.8, Boulder, Colorado; Mather
1999, Duda et al. 2001, Duda and Canty 2002).
We used the high-resolution, 3-band, color-
infrared leaf-on and leaf-off SID images and
vegetation sample data collected in the field to

categorize the 20 clusters into corresponding
cover types: evergreen, deciduous, mixed, or
bare ground and water.

Typical imagery-derived canopy cover esti-
mates include all cover, because height is not
easily distinguished and thus including every-
thing from 0.5 m saplings to 10 m trees.
However, for our two focal species low woody
cover, such as 0.5 m saplings, is not likely serving
functionally canopy cover within which they
select habitat, for foraging, nesting, or sheltering
(Grzybowski 1995, Ladd and Gass 1999, Wilkins
et al. 2005, Groce et al. 2010), potentially yielding
an estimate of canopy cover that is biased high
with regard to what is ecologically relevant to the
species. However, in the absence of remote
height estimates, it is generally not possible to
exclude small saplings and low cover from the
shrub or tree canopy data. Because the LiDAR
data provided height estimates, we were able to
use the CHM (i.e., surface derived using the
LIDAR data) to exclude low woody vegetation
from the imagery-based estimate of canopy
cover. Based on the ecology of the species, we
set the cut-off at 1 m (and removed all vegetation
,1 m tall from the canopy cover data layer). Each
2 m pixel in the resulting data layer was thus
characterized as either woody canopy cover .1¼
1 or no woody canopy cover .1 m ¼ 0. We did
not ground-truth this classification; given the
high resolution of the data for canopy height and
presence of woody canopy cover, it was unlikely
that these classes were wrongly assigned to a 2 m
cell size.

We used the resulting data layer to calculate
percent woody canopy cover. We used a 10-m-
radius moving window analysis to assign a
percent canopy cover value to each 2 m pixel in
the layer (Arc10, ESRI, Redlands, California). We
then ran focal statistics for each 100-m-radius
point to calculate mean, minimum, maximum,
and standard deviation of percent canopy cover
within the 100-m-radius. We also used the
resulting woody canopy cover- no woody cano-
py cover layer, in conjunction with the leaf-off
and leaf-on imagery, to calculate proportion of
evergreen and deciduous cover for each 100-m-
radius point.

We calculated the proportion of each ecosite
present within each 100 m radius using The
Natural Resources Conservation Service (NRCS)
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Ecological Site Description (ESD) database. Eco-
sites are distinctive land type with specific
physical characteristics, such as soil and geologic
conditions, which influences the potential vege-
tation assemblages that can emerge there. Recent
research has suggested ecosite may influence
occurrence for the focal species (Marshall 2011,
McFarland et al. 2012a).

Distribution modeling
We used a single-season occupancy model

with occurrence (w) and detection ( p) parameters
and a suite of species-specific predictive models
using metrics we hypothesized would explain
warbler and vireo habitat occurrence. We con-
ducted all analyses using the RMark v. 2.1.1
(Laake and Rexstad 2012) interface to MARK
(White and Burnham 1999) and developed all
map predictions in R 2.15.0 (R Development Core
Team 2012). Candidate models included survey
day and survey time as covariates for detection
as both have been shown to influence warbler
and vireo detection rates in Texas (Noa et al.
2007, Collier et al. 2010, Collier et al. 2012). We
used an information theoretic approach to model
selection and assessed model strength based on
Akaike’s Information Criterion adjusted for small
sample size (AICc) and Akaike weights (wi;
Burnham and Anderson 2002).

Using recent work on both species (Collier et
al. 2010, Pope 2011, Collier et al. 2012, Farrell et
al. 2012, Klassen et al. 2012, McFarland et al.
2012a, Smith et al. 2012), we developed candidate
models: (1) models including only LiDAR-de-
rived vegetative metrics (WL), (2) composite
models incorporating LiDAR-derived vegetation
metrics and non-LiDAR-derived environmental
metrics (WLC), and (3) models including only
non-LiDAR-derived vegetation and environmen-
tal metrics (WN) (Appendix A: Table A1, Appen-
dix B: Table B1) to determine whether models
that included LiDAR-derived metrics were more
competitive than those without LiDAR-derived
metrics. To create a resource selection surface
prediction, we generated a 100-m-radius hexag-
onal grid over the prediction area from a random
starting point. For each grid cell, we estimated
the suite of habitat metrics used for occurrence
modeling. Based on the best fitting model, we
calculated the predicted probability of occupancy
for each hexagonal cell creating a resource

selection probability surface for occurrence of
warblers and vireos across our study site.

We evaluated our model by visualizing a ROC
graph showing prediction accuracy versus false-
positive rate using our predicted occurrence
estimates and our detection/non-detection data.
Additionally, we developed a resource selection
surface, based on the best fitting models for both
the warbler and the vireo, for the entirety of the
Fort Hood installation. We compared our
mapped predictions with existing habitat delin-
eations for each species generated by visual
assessment of imagery and expert opinion of
habitat preferences and conditions, which are
currently used for management planning on the
installation.

RESULTS

We detected warblers at 120 survey locations,
vireos at 173 survey locations, and both at 42 of
the 453 survey locations (Fig. 2). For both species,
detection probability was best explained by
models using a covariate for day of season since
15 March 2011, with detection probability de-
clining for warblers but increasing for vireos in
concert with the season progressing. Mean
detection probability, based on mean survey date
(41 days since 19 March), was 0.47 for warblers
and 0.38 for vireos. The probability of not
detecting a warbler or vireo if it was present at
the point sample location and three survey visits
were completed by the mean survey date was
low: (1� 0.47)6¼ 0.02 for warbler and (1� 0.38)6

¼ 0.05 for vireo.
Models that did not include LiDAR-derived

vegetation height and canopy cover estimates
had substantially lower model weight (DAICc .

50) than those models that did incorporate
LiDAR-derived metrics for canopy cover and
height (Appendix A: Table A1, Appendix B:
Table B1). For warblers, competitive models
incorporated LiDAR-derived metrics for vegeta-
tion height and canopy cover; metrics for ecosite
were present only in the least competitive of
these models (DAICc¼ 5.78). Models for warbler
that included the LiDAR-derived measure of
canopy height but used the typical, not height-
corrected, measurement of canopy cover were
non-competitive (DAICc � 24.07) compared to
those that incorporated LiDAR-corrected esti-
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mates of canopy cover (Appendix A: Table A1).
For vireos, the only competitive model (wi ¼
0.985) was one that incorporated LiDAR-derived
vegetation height and LiDAR-corrected canopy
cover, in addition to metrics for ecosite (Appen-
dix B: Table B1). The next best, but non-
competitive, model given our data (wi ¼ 0.011)
included LiDAR-derived canopy height and
conventionally estimated, not height-corrected,
measurement of canopy cover (Appendix B:
Table B1).

Our model predicted 6329 (26%) of the 24,000
ha in the live fire region with warbler predicted
occupancy probabilities �0.8 (Fig. 3). Predictions
for vireos indicated a much wider potential
distribution of 4067 ha (17%) with predicted
occupancy probability �0.80, and 23,657 ha
(99%) with predicted probabilities .0.50 (Fig.
4). Area under curve estimates for the top model
for each species were high for warblers (0.864),
and moderate for vireos (0.746) with both
indicating our top model predicted reality well.
The resource selection surface for both species
identified areas currently delineated as habitat as
areas with high predicted probability of occur-
rence based on our model (Figs. 5 and 6),
supporting the predictive accuracy of our model
when expanded to the area just outside the
sampled area.

DISCUSSION

Our results indicate that high-resolution veg-
etative structure metrics are favorable for iden-
tifying species-habitat relationships for both
species. Models incorporating LiDAR-derived
metrics had higher model weights and were
much better supported for predicting occurrence
for both species on relatively small units of area
than those models which did not include LiDAR-
derived metrics. Further, those models which
relied on standard methods for estimating
canopy cover (e.g., Cunningham and Johnson
2011) but incorporated some LiDAR-derived
information for vegetation height were not
competitive for warblers (DAICc . 24) or vireos
(DAICc . 8). Models including traditional cano-
py cover estimates (e.g., tree cover data) absent
any LiDAR-derived metrics were not plausible
models (DAICc . 50) for either species, indicat-
ing that standard measures of canopy cover,

which have been used to predict warbler
distribution at coarser grain and broad spatial
extents (Collier et al. 2012), were not as useful for
accurate prediction of warbler and vireo distri-
bution at our scale of interest, and the most
parsimonious models included LiDAR-derived
estimates of local vegetation structure.

Our results demonstrate the value of local,
fine-grained vegetative structure metrics for
predicting distributions at a scale at which
management actions often occur. Although we
do not expect all remotely sensed data will
describe ecologically relevant habitat character-
istics at an ecologically relevant resolution for
understanding the habitat use of all species of
interest, we found that models including high-
resolution structure metrics performed well
relative to models using more common, coarsely
estimated, remotely sensed metrics for our focal
species. Remotely sensed structural data effec-
tively described habitat conditions at a resolution
relevant to ecological patterns of bird habitat use
for our two focal species that use distinctly
different vegetation types. In the case of the
vireo, more common approaches using coarse
remotely sensed data have failed to produce any
published model of the species occurrence,
regardless of scale or resolution. Thus, our results
provide some new insight into understanding
how to describe where vireos occur and may
help guide future investigations into why vireos
occur where they do. For both species, recent
research has suggested that previously assumed
habitat relationships may in fact vary across the
species’ ranges, among years, among individuals,
and in the context of various social and behav-
ioral conditions (Pope 2011, Farrell et al. 2012,
Klassen et al. 2012, Smith et al. 2012). The
capacity to estimate vegetation height and
perhaps other structural metrics remotely to
relate to species response variables among years,
across regions, and even among territories or nest
sites can provide an essential tool for developing
a more complete and accurate understanding of
the habitat associations for these species and
provide insight into the mechanisms driving
these patterns.

Using quantitative methods for species distri-
bution modeling is an important component of
research interested in monitoring status, trends,
and impacts to endangered species. Combining
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avian survey data with LiDAR-derived vegeta-

tion data allows for creation of dynamic models

(sensu MacKenzie et al. 2003) of avian occurrence

and distribution relative to changing habitat

conditions. High-resolution, spatially explicit

occurrence models that can predict accurately

to small units of area, such as ours, can be used to

identify and prioritize areas for management;

simulate, evaluate, and compare conservation

and management planning scenarios (McFarland

Fig. 3. Occurrence probability predictions for golden-cheeked warbler mapped to the live fire section of the

Fort Hood military installation. Diagonal hatched regions represent areas hand delineated (updated November

2011) by Fort Hood staff as golden-cheeked warbler habitat. Probability of occupancy is grouped into categories

of ,0.1 to .0.9 by 0.1. Occupancy probabilities are color-coded with red indicating highest occupancy

probability areas, orange and yellow indicating moderate occupancy probability areas and blue indicating low

occupancy probability areas.
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et al. 2012b); assess and mitigate for impacts, and

monitor status and trends at a resolution and

extent that is relevant ecologically and practically

(Jones 2001, Chalfoun and Martin 2007); and

provide decision support for conservation plan-

ning and policy development and for adaptive

management or other structured decision mak-

ing processes (Martin et al. 2009).

Identification of habitat for our target species

has been the focus of much interest because of its

Fig. 4. Occurrence probability predictions for black-capped vireo mapped to the live fire section of the Fort

Hood military installation. Diagonal hatched regions represent areas hand delineated (updated November 2011)

by Fort Hood staff as black-capped vireo habitat. Probability of occupancy is grouped into categories of ,0.1 to

.0.9 by 0.1. Occupancy probabilities are color-coded with red indicating highest occupancy probability areas,

orange and yellow indicating moderate occupancy probability areas and blue indicating low occupancy

probability areas.
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use in informing decisions for species conserva-

tion and management. Management plans, res-

toration actions, impact assessment, and

mitigation of environmental or anthropogenic

impacts are often conducted over small spatial

extents, typically within protected areas or small

parcels of private lands. Thus, areas where

management actions are applied and evaluated

are often small relative to the scale and precision

of existing occurrence predictions; approaches

that identify distribution patterns relative to

vegetative conditions with a high-resolution can

only increase our ability to predict to small

spatial units of area and to increase the effective-

ness and efficiency of conservation and manage-
ment practices (Vierling et al. 2008). Our
approach, combining species detection/non-de-
tection data with high-resolution vegetation
structure information, provides a high-resolution
species distribution model that is standardized
and transparent for use in informing future
management actions in the context of growing
challenges to meet conservation goals, balance
multiple land use needs, and track ever-changing
environmental and land use conditions.

Fig. 5. Mapped predictions from the best fitting occurrence model for golden-cheeked warbler based on data

collected within the life fire section of the installation to the entirety of the Fort Hood military installation.

Diagonal hatched regions represent areas hand delineated by Fort Hood staff as golden-cheeked warbler habitat.

Probability of occupancy is grouped into categories of ,0.1 to .0.9 by 0.1. Occupancy probabilities are color-

coded with red indicating highest occupancy probability areas, orange and yellow indicating moderate

occupancy probability areas, and blue indicating low occupancy probability areas.
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SUPPLEMENTAL MATERIAL

APPENDIX A

Table A1. Model selection table for candidate models fitted to golden-cheeked warbler occurrence data from

point sampling on Ft. Hood, Texas during 2011. Models which rely strictly on LiDAR data were denoted by

(WL), models which rely on a combination of LiDAR and non-LiDAR metrics were denoted by (WLC) and

models which rely strictly on non-LiDAR metrics were denoted by (WN).

Occurrence model Detection model k DAICc wi

WL(Mean Can cov þ Mean Can hght) p(Day) 5 0� 0.57
WL(% Decid þ % Evergr þ Mean Can Hght) p(Day) 6 1.48 0.27
WL(Mean Can cov þ % Evergr þ Min Can Hght þ SD Can Hght) p(Day) 7 4.17 0.07
WL(% Decid þ % Evergr þ Min Can Hght) p(Day) 6 4.97 0.04
WLC(% Decid þ % Evergr þ Ecosite-LSH þ Ecosite-CL þ Ecosite-SA) p(Day) 8 5.78 0.03
WLC(Unadj Mean Can Cov þ Mean Can Hght) p(Day) 5 24.07 ,0.01
WLC(Mean Can Cov: Mean Can Hght þ Ecosite-LSH þ Ecosite-CL þ Ecosite-SA) p(Day) 7 25.99 ,0.01
WL(Mean Can Cov: Mean Can Hght) p(Day) 7 26.26 ,0.01
WLC(Unadj Mean Can Cov þ Mean Can Hght) p(Day) 4 29.65 0
WLC(Mean Can Cov: % Evergr þ Mean Can Hght þ Ecosite-LSH þ Ecosite-SA) p(Day) 7 30.03 0
WLC(Mean Can Cov: Mean Can Hght) p(Day) 4 30.69 0
WLC(Mean Can Cov: % Evergr þ Mean Can Hght þ Ecosite-LSH þ Ecosite-CL þ

Ecosite-SA)
p(Day) 8 31.02 0

WLC(Unadj Mean Can Cov: % Evergr þ Mean Can Hght þ Ecosite-LSH þ Ecosite-
SA)

p(Day) 7 31.77 0

WLC(Unadj Mean Can Cov: % Evergr þ Mean Can Hght þ Ecosite-LSH þ Ecosite-
CL þ Ecosite-SA)

p(Day) 8 32.73 0

WL(Mean Can Cov:% Evergr þ Mean Can Hght) p(Day) 5 35.61 0
WLC(Unadj Mean Can Cov þ % Evergr þ Min Can Hght þ SD Can Hght) p(Day) 7 38.33 0
WLC(Unadj Mean Can Cov: % Evergr þ Mean Can Hght) p(Day) 5 38.78 0
WN(Unadj Mean Can Cov) p(Day) 4 51.61 0
WN(Unadj Mean Can Cov þ Ecosite-LSH þ Ecosite-CL þ Ecosite-SA) p(Day) 7 56.38 0
WL(Mean Can Cov þ Mean Can Hght) p(Day:Time) 5 60.59 0
WLC(% Decid þ % Evergr þ Mean Can Hght) p(Day:Time) 7 60.91 0
WL(Mean Can Cov þ % Evergr þ Min Can Hght þ SD Can Hght) p(Day:Time) 7 64.63 0
WL(% Decid þ % Evergr þ Min Can Hght) p(Day:Time) 6 65.39 0
WLC(Mean Can Cov þ Ecosite-LSH þ Ecosite-CL þ Ecosite-SA) p(Day:Time) 7 65.45 0
WLC(% Decid þ % Evergr þ Ecosite-LSH þ Ecosite-CL þ Ecosite-SA) p(Day:Time) 8 66.01 0
WLC(Unadj Mean Can Cov þ Mean Can Hght) p(Day:Time) 5 84.22 0
WLC(Mean Can Cov: Mean Can Hght þ Ecosite-LSH þ Ecosite-CL þ Ecosite-SA) p(Day:Time) 7 85.84 0
WLC(Unadj Mean Can Cov: Mean Can Hght þ Ecosite-LSH þ Ecosite-CL þ Ecosite-

SA)
p(Day:Time) 7 86.23 0

WLC(Unadj Mean Can Cov: Mean Can Hght) p(Day:Time) 4 89.13 0
WLC(Mean Can cov: % Evergr þ Mean Can Hght þ Ecosite-LSH þ Ecosite-SA) p(Day:Time) 7 89.74 0
WL(Mean Can Cov: Mean Can Hght) p(Day:Time) 4 90.14 0
WLC(Mean Can Cov: % Evergr þ Mean Can Hght þ Ecosite-LSH þ Ecosite-CL þ

Ecosite-SA)
p(Day:Time) 8 90.80 0

WLC(Unadj Mean Can Cov: % Evergr þ Mean Can Hght þ Ecosite-LSH þ Ecosite-
SA)

p(Day:Time) 7 91.28 0
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APPENDIX B

Table A1. Continued.

Occurrence model Detection model k DAICc wi

WLC(Unadj Mean Can Cov: % Evergr þ Mean Can Hghtþ Ecosite-LSH þ Ecosite-
CL þ Ecosite-SA)

p(Day:Time) 7 92.33 0

WL(Mean Can Cov: % Evergr þ Mean Can Hght) p(Day:Time) 5 95.12 0
WLC(Unadj Mean Can Cov:% Evergr þ Mean Can Hght) p(Day:Time) 5 98.11 0
WL(% Decid þ % Evergr þ Min Can Hght þ SD Can Hght) p(Day:Time) 7 99.78 0
WLC(Unadj Mean Can Cov: % Evergr þ Ecosite-LSH þ Ecosite-CL þ Ecosite-SA) p(Day:Time) 7 .100 0
WLC(Unadj Mean Can Cov:% Evergr) p(Day:Time) 4 .100 0

Note: Model parameters are: Can Cov: LiDAR derived estimate of canopy cover; Unadj Can Cov: non-LiDAR derived
estimate of canopy cover; Can Hght: LiDAR derived estimate of canopy height; % Evergr: percentage of evergreen vegetation;
% Decid: percentage of deciduous vegetation; Ecosite: proportion of area within each buffer comprised of each ecosite type
(LSH¼ low stony hill, CL ¼ clay loam, SA¼ steep adobe).

� �2 log-likelihood for best model: 1082.4103.

Table B1. Model selection table for candidate models fitted to black-capped vireo occurrence data from point

sampling on Ft. Hood, Texas during 2011. Models which rely strictly on LiDAR data were denoted by (WL),

models which rely on a combination of LiDAR and non-LiDAR metrics were denoted by (WLC) and models

which rely strictly on non-LiDAR metrics were denoted by (WN).

Occurrence model Detection model k DAICc wi

WLC(Mean Can Cov: Mean Can Hght þ Ecosite-LSH þ Ecosite-CL þ Ecosite-SA þ
Ecosite-SCL)

p(Day) 8 0� 0.985

WLC(Unadj Mean Can Cov: Mean Can Hght þ Ecosite-LSH þ Ecosite-CL þ Ecosite-
SA þ Ecosite-SCL)

p(Day) 8 9.14 0.011

WLC(Mean Can Cov: Mean Can Hght þ Ecosite-LSH þ Ecosite-CL) p(Day) 6 11.60 ,0.01
WLC(Mean Can Cov: Mean Can Hght þ Ecosite-LSH: Can Hght þ Ecosite-CL: Can

Hght þ Ecosite-SA: Can Hgh þ Ecosite-SCL: Can Hght)
p(Day) 8 12.44 ,0.01

WLC(Unadj Mean Can Cov: Mean Can Hght þ Ecosite-LSH þ Ecosite-CL) p(Day) 6 21.07 0
WLC(Unadj Mean Can Cov: Mean Can Hght þ Ecosite-LSH: Can Hght þ Ecosite-

CL: Can Hght þ Ecosite-SA)
p(Day) 8 22.25 0

WLC(Unadj Mean Can Cov: Mean Can Hght) p(Day) 5 28.18 0
WL(% Evergr þ Mean Can Hght) p(Day) 5 40.16 0
WL(Mean Can Cov þ Mean Can Hght) p(Day) 5 43.45 0
WLC(%Evergr: SD Can Hght þ Ecosite-LSH þ Ecosite-CL þ Ecosite-SA þ Ecosite-

SCL)
p(Day) 8 45.16 0

WN(Unadj Mean Can Cov þ Ecosite-LSH þ Ecosite-CL þ Ecosite-SA þ Ecosite-SCL) p(Day) 8 51.20 0
WLC(Mean Can Cov þ Mean Can Hght: Ecosite-LSH þ Ecosite-CL þ Mean Can

Hght: Ecosite-SA)
p(Day) 7 53.36 0

WN(Unadj Mean Can Cov þ Ecosite-LSH þ Ecosite-CL) p(Day) 6 56.63 0
WL(Mean Can Cov: Mean Can Hght) p(Day) 4 59.97 0
WN(Unadj Mean Can Cov: Ecosite-LSH þ Unadj Mean Can Cov: Ecosite-CL) p(Day) 5 61.42 0
WLC(% Decid: Max Can Cov þ Mean Can Hght) p(Day) 5 67.08 0
WLC(Unadj Mean Can Cov: Mean Can Hght) p(Day) 4 67.13 0
WLC(Mean Can Cov þ Mean Can Hght: Ecosite-LSH þ Mean Can Hght: Ecosite-

SA)
p(Day) 6 67.78 0

WL(% Decid: Max Can Cov þ Max Can Hght) p(Day) 5 68.31 0
WL(Mean Can Cov: SD Can Hght) p(Day) 4 69.65 0
WLC(Mean Can Cov: Ecosite-LSH þ Mean Can Cov: Ecosite-CL) p(Day) 5 70.95 0
WLC(Unadj Mean Can Cov þ Mean Can Hght: Ecosite-LSH þ Mean Can Hght:

Ecosite-SA þ Ecosite-CL)
p(Day) 7 74.27 0

WL(% Evergr: Mean Can Hght) p(Day) 4 75.09 0
WLC(Unadj Mean Can Cov: Max Can Hght) p(Day) 4 78.99 0
WL(% Evergr: SD Can Hght) p(Day) 4 79.88 0
WLC(Unadj Mean Can Cov: SD Can Hght) p(Day) 4 81.94 0
WN(Unadj Mean Can Cov) p(Day) 4 82.43 0
WL(% Evergr: Max Can Cov) p(Day) 4 83.49 0
WLC(Unadj Mean Can Cov þ Mean Can Hght: Ecosite-LSH þ Mean Can Hght:

Ecosite-SA)
p(Day) 6 84.12 0
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SUPPLEMENT

R package (Windows and cross-platform) including all data and analysis (Ecological Archives
C004-005-S1).

Table B1. Continued.

Occurrence model Detection model k DAICc wi

WLC(Mean Can Cov: Mean Can Hght þ Ecosite-LSH þ Ecosite-CL þ Ecosite-SA) p(Day:Time) 7 91.29 0
WLC(Mean Can Cov: Mean Can Hght þ Ecosite-LSH þ Ecosite-CL) p(Day:Time) 6 98.60 0
WLC(Unadj Mean Can Cov: Mean Can Hght þ Ecosite-LSH þ Ecosite-CL þ Ecosite-

SA)
p(Day:Time) 7 .100 0

WLC(Unadj Mean Can Cov: Mean Can Hght þ Ecosite-LSH þ Ecosite-CL) p(Day:Time) 6 .100 0
WLC(Unadj Mean Can Cov þ Mean Can Hght) p(Day:Time) 5 .100 0
WL(% Evergr þ Mean Can Hght) p(Day:Time) 5 .100 0
WLC(% Evergr: SD Can Hght þ Ecosite-LSH þ Ecosite-CL þ Ecosite-SA þ Ecosite-

SCL)
p(Day:Time) 8 .100 0

WL(Mean Can Cov þ Mean Can Hght) p(Day:Time) 5 .100 0
WN(Unadj Mean Can Cov þ Ecosite-LSH þ Ecosite-CL þ Ecosite-SA) p(Day:Time) 7 .100 0
WLC(Mean Can Cov þ Mean Can Hght: Ecosite-LSH þ Mean Can Hght: Ecosite-SA
þ Ecosite-CL)

p(Day:Time) 7 .100 0

WN(Unadj Mean Can Cov þ Ecosite-LSH þ Ecosite-CL) p(Day:Time) 6 .100 0
WLC(Unadj Mean Can Cov: Ecosite-LSH þ Unadj Mean Can Cov: Ecosite-CL) p(Day:Time) 5 .100 0
WL(Mean Can Cov: Mean Can Hght) p(Day:Time) 4 .100 0
WLC(Mean Can Cov þ Mean Can Hght: Ecosite-LSH þ Mean Can Hght: Ecosite-

SA)
p(Day:Time) 6 .100 0

WL(Mean Can Cov: Max Can Hght) p(Day:Time) 4 .100 0
WL(% Decid: Max Can Cov þ Mean Can Hght) p(Day:Time) 5 .100 0
WLC(Unadj Mean Can Cov: Mean Can Hght) p(Day:Time) 4 .100 0
WL(Mean Can Cov: Ecosite-LSH þ Mean Can Cov: Ecosite-CL) p(Day:Time) 4 .100 0
WL(% Decid: Max Can Cov þ Max Can Hght) p(Day:Time) 5 .100 0
WL(Mean Can Cov: SD Can Hght) p(Day:Time) 4 .100 0
WLC(Unadj Mean Can Cov þ Mean Can Hght: Ecosite-LSH þ Mean Can Hght:

Ecosite-SA þ Ecosite-CL)
p(Day:Time) 7 .100 0

WL(% Evergr: Mean Can Cov) p(Day:Time) 4 .100 0
WLC(Unadj Mean Can Cov: Max Can Hght) p(Day:Time) 4 .100 0
WLC(% Evergr: SD Can Hght) p(Day:Time) 4 .100 0
WLC(Unadj Mean Can Cov: SD Can Hght) p(Day:Time) 4 .100 0
WLC(Unadj Mean Can Cov þ Mean Can Hght: Ecosite-LSH þ Mean Can Hght:

Ecosite-SA
p(Day:Time) 6 .100 0

WLC(%Evergr: Max Can Hght) p(Day:Time) 4 .100 0

Note:Model parameters are: Can Cov: LiDAR derived estimate of canopy cover; Unadj Can cov: non-LiDAR derived estimate
of canopy cover; Can hght: LiDAR derived estimate of canopy height; % Evergr: percentage of evergreen vegetation; % Decid:
percentage of deciduous vegetation; Ecosite: proportion of area within each buffer comprised of each ecosite type (LSH¼ low
stony hill, CL ¼ clay loam, SA ¼ steep adobe, SCL¼ stony clay loam).

� �2 log-likelihood for best model: 1507.3053.
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