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Predicting patch occupancy in fragmented
landscapes at the rangewide scale for an
endangered species: an example of an
American warbler
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INTRODUCTION

Species inhabiting human-dominated environments often exist

in locations where habitat loss and fragmentation have reduced

patch contiguity, patch size, and increased edge and isolation

effects (Marzluff, 2001; Bolger, 2002). Such changes in

structural features at the local scale also influence dynamics

in surrounding areas (Forman, 1995; Saab, 1999). Moreover,
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ABSTRACT

Aim Our objective was to identify the distribution of the endangered golden-

cheeked warbler (Setophaga chrysoparia) in fragmented oak–juniper woodlands by

applying a geoadditive semiparametric occupancy model to better assist decision-

makers in identifying suitable habitat across the species breeding range on which

conservation or mitigation activities can be focused and thus prioritize

management and conservation planning.

Location Texas, USA.

Methods We used repeated double-observer detection/non-detection surveys of

randomly selected (n = 287) patches of potential habitat to evaluate warbler

patch-scale presence across the species breeding range. We used a geoadditive

semiparametric occupancy model with remotely sensed habitat metrics (patch size

and landscape composition) to predict patch-scale occupancy of golden-cheeked

warblers in the fragmented oak–juniper woodlands of central Texas, USA.

Results Our spatially explicit model indicated that golden-cheeked warbler patch

occupancy declined from south to north within the breeding range concomitant

with reductions in the availability of large habitat patches. We found that 59% of

woodland patches, primarily in the northern and central portions of the warbler’s

range, were predicted to have occupancy probabilities £0.10 with only 3% of

patches predicted to have occupancy probabilities >0.90. Our model exhibited

high prediction accuracy (area under curve = 0.91) when validated using

independently collected warbler occurrence data.

Main conclusions We have identified a distinct spatial occurrence gradient for

golden-cheeked warblers as well as a relationship between two measurable

landscape characteristics. Because habitat-occupancy relationships were key

drivers of our model, our results can be used to identify potential areas where

conservation actions supporting habitat mitigation can occur and identify areas

where conservation of future potential habitat is possible. Additionally, our results

can be used to focus resources on maintenance and creation of patches that are

more likely to harbour viable local warbler populations.
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Bayesian inference, golden-cheeked warbler, habitat conservation, occupancy,
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fragmentation can create ecological thresholds for demo-

graphic values such as population size (Homan et al., 2004;

Betts et al., 2007), survival (Ruiz-Gutiérrez et al., 2008),

dispersal (Bayne & Hobson, 2002) and reproduction (Robin-

son et al., 1995; Lloyd et al., 2005). Such thresholds can

potentially increase local extinction risk for species in areas

under intensive land use pressures (Lande, 1998). Whether or

not a species is structured as a metapopulation, knowledge of

how habitat is occupied through space allows predictions to be

made on colonization and extinction probabilities (Mills,

2007:265).

A core issue of conservation biology is the distribution of

individuals through space, typically with a focus on the

relationship between availability, size and proximity of

potential habitats to one another. Information on how

environmental metrics predict habitat use across space and

time provides the foundation for population management and

conservation strategies (Sagarin et al., 2006; Brotons et al.,

2007). As such, environmental metrics from locations where

presence–absence surveys have been conducted represent the

basis for predictive modelling of species distributions and for

monitoring changes in distributions as environmental condi-

tions change (Moore & Swihart, 2005; Elith et al., 2006;

MacKenzie, 2006; Syphard & Franklin, 2009). Species inhab-

iting human-dominated environments present challenges for

habitat modelling because they often exist in locations where

habitat loss and fragmentation has reduced patch contiguity

and patch size and increased edge and isolation effects (Bolger,

2002). Thus, it is likely that the underlying distribution process

varies nonlinearly in space wherein we would expect, for

instance, that conditions will become less similar as spatial

proximity declines (e.g. spatial autocorrelation; Augustin et al.,

1996; Royle et al., 2007). In general, the impact of incorpo-

rating spatial relationships into predictive models is an attempt

to create a proxy for addressing unmeasurable or unidentifi-

able environmental metrics, which otherwise would not be

incorporated into model structure (Tognelli & Kelt, 2004).

Our goal was to predict patch occupancy in a fragmented

landscape for the golden-cheeked warbler (Setophaga chrysop-

aria) across the entirety of its breeding range. The golden-

cheeked warbler was listed as federally endangered in the

United States in 1990 owing to concerns about habitat loss

within the warbler’s restricted breeding range (88,878 km2 in

central Texas, USA; Fig. 1a; U.S. Fish and Wildlife Service

1992). The warblers’ endemism to central Texas during

breeding is driven by its relationship to the oak (Quercus

spp.)–Ashe juniper (Juniperus ashei) woodland communities

that provide foraging habitat, nesting cover, and shredded bark

from Ashe juniper for nest construction (Pulich, 1976; Ladd &

Gass, 1999). The breeding range of the warbler in central Texas

has seen an increase in human populations of approximately

50% since species listing (Groce et al., 2010). Previous studies

of the warbler in Texas have focused on public lands (Anders &

Dearborn, 2004; Peak, 2007; Reidy et al., 2008), which

represent <5% of land within the warblers range; hence, few

data exist for the accurate assessment of rangewide warbler

distribution and factors affecting distribution (DeBoer &

Diamond, 2006; Collier et al., 2010). Several recent attempts

to map the distribution of potential warbler habitat within the

breeding range (Diamond, 2007; SCWA 2007, Loomis Austin

2008) used remotely sensed vegetative conditions that were

deemed appropriate for warblers and classified patches into

qualitative categories representing habitat quality (e.g. high or

low quality) based on expert opinion and limited field data.

However, these qualitative assessments of potential habitat

were unable to quantitatively estimate likelihood of warbler

presence across the species range, thus limiting their usefulness

for conservation planning.

We developed a geoadditive semiparametric occupancy

model (Ruppert et al., 2003; Crainiceanu et al., 2005; Gimenez

et al., 2006) for repeated detection/non-detection survey data

to predict patch-specific occupancy of the golden-cheeked

warbler across the breeding range in Texas. We corrected for

imperfect detection (Royle & Kéry, 2007; Royle et al., 2007)

and allowed the spatial relationship between patch occupancy

probabilities to be determined as a function of a nonparamet-

ric interaction (Ruppert et al., 2003; Gimenez et al., 2006;

Grosbois et al., 2009). The geoadditive component of our

model represents the merging of the underlying semiparamet-

ric model with the spatial aspect provided by the spline basis

(a) (b)

Figure 1 Distribution (a) of woodland

patches (n = 63,616) and posterior pre-

dicted spatial process (b) centred at the

regression means for the geoadditive

semiparametric model containing patch

size, landscape composition, X and Y

location, and the interaction between

patch size and landscape composition

within the 35-county breeding range of the

golden-cheeked warbler in Texas, USA.
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functions as detailed in Kammann & Wand (2003) and

Ruppert et al. (2003). Our objective was to predict those areas

of high and low occurrence probability to better assist

decision-makers in prioritizing conservation, management or

mitigation activities across the golden-cheeked warbler’s

breeding range. We also detail how our sampling and analytical

approach can be broadly applied to many other species in

habiting fragmented landscapes.

METHODS

Study area and biological covariates

Golden-cheeked warblers are endemic to oak–juniper wood-

lands (Pulich, 1976; Ladd & Gass, 1999); thus, we defined

woodland patches as the sampling unit on which we measured

occurrence (Collier et al., 2010). We delineated woodland

patches based on spring 2007 and 2008 LANDSAT five imagery

(30 m pixel) that maximized vegetative spectral differences

after leaf emergence in spring and prior to the stresses

associated with heat and drought in the summer (Collier et al.,

2010). We conducted an unsupervised classification of wood-

lands across central Texas, aggregating land cover types into

two classes (oak–juniper woodland and other) and used the

2001 National Land Cover Dataset (NLCD) to mask any

notable areas (e.g. croplands, wetlands) that were misclassified

as woodlands by our unsupervised classification. We created

breaks between patches traversed by paved roads using the

Texas strategic mapping program (STRATMAP) by intersect-

ing road data with our woodland classification and deleting

any woodland classified pixels that intersected the road layer.

We assigned each patch of woodland habitat to an adminis-

trative unit based on US Fish and Wildlife Service Recovery

Regions (USFWS 1992). For each woodland patch, we

calculated patch size (Collier et al., 2010) and landscape

composition (Magness et al., 2006) using ESRI ArcGIS 10 as

both are known to influence warbler presence (see Appendi-

ces S1 and S2 in Supporting Information). We estimated

landscape composition for each patch as the mean percentage

of woodlands within a 400-m radius circle surrounding a given

pixel as this radius was determined to capture landscape

variation relevant to warbler presence at the patch scale

(Magness et al., 2006). The mean value for all pixels within a

patch was used as the landscape composition estimate of the

patch for analysis.

Sample size and survey methodology

We determined minimum sample size following MacKenzie

and Royle (2005). We used a probability proportional to size

sampling design (PPS; Thompson 2002) and selected patches

randomly in proportion to size for surveying so not to over- or

under-weight our sample frame because of the non-normal

distribution of patches sizes across the range. We focused our

survey efforts on patches £200 ha owing to our knowledge of

size-based threshold effects in species presence (He & Gaston,

2000; Butcher et al., 2010; Collier et al., 2010). Because we

anticipated access restrictions to patches on private lands

(Hilty & Merenlender, 2003), we created a randomly selected

sampling frame five times greater than the minimum sample

size. If we were unable to obtain access to the selected patch, we

contacted landowners of the next randomly selected patch akin

to assuming that missing or inaccessible properties were

missing completely at random (Stevens & Jensen, 2007). We

supplemented our random sampling with patches on public

and private properties that fell within the bounds of our

sampling design on which we currently had access. We

assumed throughout our study that access to property was

not influenced by known or perceived warbler presence or

absence and that local management and access were unrelated,

and we made no assumptions that any one patch surveyed

would have a greater or lesser likelihood of warbler presence.

We used standardized protocols for surveying regardless of

patch ownership. We attempted to survey the entirety of every

accessed patch, and a patch was contained on multiple

properties where some access was restricted, and we assumed

that the probability of detecting warblers did not differ

between accessible and inaccessible areas of the patch.

We conducted auditory and visual surveys for warblers

between mid-March and late May 2009 to determine patch

occupancy (Collier et al., 2010). Two simultaneous indepen-

dent observers surveyed each patch systematically for warbler

presence–absence (MacKenzie, 2006). If at least one observer

detected a warbler within a patch during a survey period, we

did not revisit the patch (e.g. a removal approach, MacKenzie,

2006). Based on previous research (Collier et al., 2010), if no

warblers were detected during a survey, it was necessary to

resurvey patches up to a maximum of six times (three double-

observer surveys) in an attempt to detect warblers. While most

patches (>95%) were surveyed £6 times, several were surveyed

one additional time by double observers, so we used a

maximum number of survey occasions of 8 for our analysis.

Thus, our data represented repeated detection/non-detection

surveys of i = 1, 2,…, R patches of warbler habitat where each

site was surveyed j = 1, 2,…, J times to determine warbler

detection/non-detection during the 2009 survey season. Data

resulting from our repeated presence–absence surveys repre-

sent a capture history (e.g. 0011….) wherein a positive

detection is given a 1, no detection is given a 0, and no survey

conducted is designated using ‘.’ notation (White and Burn-

ham 1999).

Analysis

Although there are many statistical methods used to predict

species distributions (Guisan & Zimmermann, 2000; Elith

et al., 2006; Guisan et al., 2006; MacKenzie, 2006), generalized

linear (GLM) and additive (GAMs) models represent two

popular approaches for presence–absence data (Guisan &

Zimmermann, 2000; Guisan et al., 2006; Syphard & Franklin,

2009). Models such as these are useful for modelling linear and

nonlinear effects of biological covariates (Kammann & Wand,

B. A. Collier et al.
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2003; Wood, 2003) and can be used to address spatial variation

in species distribution data (Augustin et al., 1996, Kammann &

Wand, 2003; Knapp et al., 2003; Gimenez et al., 2009).

However, GAMs and GLMs often do not provide predictions

of the probability of occurrence within a specific location,

often only allowing for statements on relative suitability (Elith

et al., 2006; Royle et al., 2007). Thus, we used geoadditive

semiparametric regression (Ruppert et al., 2003; Gimenez

et al., 2006, 2009) to model golden-cheeked warbler patch

occupancy and associated detection probabilities across the

species breeding range in Texas.

The dependent variable in our analysis was the presence or

absence of golden-cheeked warblers in patches of oak–juniper

woodland. We modelled patch-specific occupancy probability

with patch size, landscape composition and their interaction

entering the model linearly with spatial predictors (latitude and

longitude) incorporated into the model as a nonparametric

interaction (Ruppert et al., 2003; Crainiceanu et al., 2005). We

predicted occupancy probability (wi) as a function of those

covariate data and spatial location within the range expressed as

logitðwiÞ ¼ b0 þ b1X1 þ
X20

k¼1

ukðLocationi � jkÞ þ el

where the blX1 represents a vector of l predictor variables

(patch size, landscape composition, patch size–landscape

composition interaction, and patch-specific UTMs) entering

the model linearly and (Locationi–jk) represents the spatial

effect for each surveyed habitat patch (Gimenez et al., 2009).

Spatial relationships in our model used radial basis penalized

splines (Ruppert et al., 2003), which can be efficiently mod-

elled in a generalized linear mixed model framework and have

the added benefit of being rotationally invariant when used for

geographical smoothing (Ruppert et al., 2003). We fit the

above model using k = 20 knots (Ruppert et al., 2003; Crain-

iceanu et al., 2005), which ensured adequate flexibility and

used the space-filling algorithm of Nychka & Saltzman (1998)

and the R package fields (Fields Development Team 2006) to

select knot locations within our landscape. Our model was

adapted for use as a single-season occupancy model (MacKen-

zie, 2006) and relied on the penalized spline structure detailed by

Ruppert et al. (2003), Crainiceanu et al. (2005) and Gimenez

et al. (2006, 2009). We have provided annotated WinBUGS

code adapted to our specific study as an Appendix S3.

Detection model

Many species distribution modelling approaches (Knapp et al.,

2003; and reviews by Elith et al., 2006; Guisan et al., 2006) do

not mention detection rates when discussing modelling

methods even though variable detection rates can have

significant impacts on distribution model predictions (Mac-

Kenzie, 2006; Royle & Kéry, 2007; Kéry et al., 2010). Because

our model was hierarchical in nature, we accounted for the

impact of imperfect detection on our occupancy predictions by

modelling the detection process (Royle et al., 2007). We used a

temporal covariate representing survey date for detection

modelling as date of survey has been shown to adequately

predict detection rates of warblers at the patch scale (Collier

et al., 2010). Thus, we addressed issues associated with

imperfect detection using the linear logistic relationship (Kéry,

2008; Royle & Dorazio, 2008)

logitðpiÞ ¼ a0 þ a1Day;

where Day represents the numeric day since 15 March 2009

and continuing through the end of the breeding season.

Bayesian inference

We adopted a Bayesian approach that has been shown to be

computationally efficient for hierarchical generalized linear

mixed models with radial basis splines (Wood et al., 2002;

Ruppert et al., 2003; Crainiceanu et al., 2005; Gimenez et al.,

2009; King et al., 2010). We provided a set of prior distribu-

tions for all model parameters to fully specify our model

(Royle & Dorazio, 2008; King et al., 2010). We used normal

prior’s N (0,100) on the b’s that enter linearly into our model

and specified independent, normal priors on random effect

parameters uk � ð0; sbÞ where sb ¼ sð0:1; 0:1Þ (Ruppert et al.,

2003; Crainiceanu et al., 2005). We used normal priors N

(0,100) for the intercept and slope of the detection sub-model.

We standardized covariates prior to analysis to assist with

model convergence (Crainiceanu et al., 2005).

We performed all analysis using WinBUGS v. 1.4 (Spiegel-

halter et al. 2003) and R (R Core Development Team, 2009)

using R package R2WinBUGS (Sturtz et al., 2005) for the

Markov chain Monte Carlo (MCMC) simulations. Annotated

R and WinBUGS code for running the semiparametric

occupancy model and for predicting patch-specific occupancy

is available as Appendix S3. We ran our MCMC algorithm for

1 · 106 iterations after a 50,000 iteration burn-in. We thinned

every 100th iteration for model diagnostics and inference. We

assessed model convergence based on the Gelman and Rubin

statistic (Gelman & Rubin, 1992) and through residual

evaluation (Ruppert et al., 2003) using R packages boa (Smith,

2007) and coda (Plummer et al., 2006.

Model evaluation

To evaluate our semiparametric model, we used independent

survey data on golden-cheeked warblers in Texas. During

2003–2007 and 2010, we conducted observational studies in

woodland patches across the warbler’s breeding range where

presence–absence data at the patch scale was collected using

those methods detailed in Sample size and survey methodology,

which represented an optimal, data-driven approach for model

validation (Guisan & Zimmermann, 2000). We followed advice

of Guisan & Zimmermann (2000) and Elith et al. (2006) and

developed receiver operating curves (ROC) and sensitivity/

specificity comparisons using the independent survey data to

evaluate predictive accuracy of our modelling approach (Sing

et al., 2005).

Occupancy distribution of an American warbler
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RESULTS

We identified and assigned biological metrics to 63,616 patches

of woodlands across our study area in Texas (Fig. 1a). Our

remotely sensed habitat layer included approximately 1.678

million ha of woodlands. Approximately 70% of the patches

were £10 ha in area and encompassed about 11% of total

available habitat. In 2009, we surveyed 287 patches for warbler

presence and had positive detections in 150 of the 287 patches,

providing a naı̈ve estimate of patch occupancy of 52%. Surveyed

patches ranged from 2 to >11,000 ha in area, and we surveyed

patches in 34 of the 35 counties in the warbler’s range.

Semiparametric model results

We provide summaries of the posterior distribution of model

parameters in Table 1. Brooks–Gelman–Rubin diagnostics

indicated model convergence with scale reduction factors for

all parameters between 1.00 and 1.10 and a multivariate scale

reduction factor of 1.08 (Gelman & Rubin, 1992). We

developed a predictive surface of the spatial effect by predicting

occupancy probability for locations on a 100-m grid distrib-

uted across our study area while holding all model parameters

at their mean covariate value. There was substantial evidence of

spatial variability affecting warbler distribution, as we found

areas of higher relative occurrence probability on both the

eastern border of the region roughly between 30�50¢N and

31�55¢N latitude, as well as in the south-western third of the

study region south of 30�10¢N and west of 99�00¢W (Fig. 1b).

Habitat patches towards the northern and western edge of the

species range showed a much lower predicted occurrence

probability of warblers.

Detection and occupancy predictions

As expected, the effect of sample survey date on detection

probability was negative, indicating that detection probability

declines as the breeding season progresses. Using the mean

date (43 days since 15 March) for all detections, the posterior

mean detection probability was 0.701. Based on this value, we

estimated that the probability of not detecting a warbler when

one was present within a patch of warbler habitat when

surveyed by the mean date would be approximately

(1–0.701)8 = 0.00006, or effectively 0.

Our model predicted that 86% of the patches (see Methods:

Study area and biological covariates) had occupancy probabil-

ities £50%, and 59% had a predicted occupancy £10%

(Table 2). Only 2.9% of patches were predicted to have

occupancy probabilities >90% (Table 2), most of which were

large patches in the south-western portion of the species

breeding range (Fig. 1a). Patches with occupancy probabilities

Table 1 Posterior parameter estimates for the geoadditive

semiparametric occupancy model applied to the golden-cheeked

warbler survey data collected in Texas during 2009. The bi terms

represent the model intercept (b1), latitudinal spatial location (b2),

longitudinal location (b3), patch size (b4), landscape composition

(b5) and patch size-landscape composition interaction (b6). The

li terms represent the random effect terms for the 20 knot

locations relative to each patch, and a0 and a1 represent the

intercept and slope for the linear-logistic detection model.

Parameter Mean SD

b1 )11.56 3.530

b2 0.044 3.440

b3 )1.107 3.085

b4 )0.338 5.961

b5 0.676 6.004

b6 1.152 5.957

l1 0.077 0.517

l2 )0.268 0.799

l3 0.086 0.965

l4 1.469 1.205

l5 0.007 1.151

l6 )0.891 1.154

l7 )0.321 1.346

l8 )0.725 1.352

l8 1.430 1.439

l10 )0.253 0.965

l11 0.099 1.231

l12 0.877 1.390

l13 )0.341 1.258

l14 1.546 1.344

l15 0.116 1.219

l16 )1.683 1.446

l17 0.026 0.494

l18 0.919 1.232

l19 0.225 1.219

l20 )0.816 1.236

a0 1.101 0.141

a1 )0.145 0.137

Table 2 Number of classified habitat patches, patch area (ha),

and percentage of total potential patches and total area by pre-

dicted occupancy category based on a geoadditive semiparametric

occupancy model for golden-cheeked warblers in Texas during

2009.

Predicted

occupancy

No. of

patches Total ha

Percentage of total

Patches Area

<0.10 37,717 200,654 59.3 12.0

0.10–0.20 7341 103,439 11.5 6.2

0.20–0.30 4129 85,883 6.5 5.1

0.30–0.40 3022 77,761 4.8 4.6

0.40–0.50 2600 86,655 4.1 5.2

0.50–0.60 2107 82,346 3.3 4.9

0.60–0.70 1841 101,792 2.9 6.1

0.70–0.80 1710 134,357 2.7 8.0

0.80–0.90 1447 175,870 2.3 10.5

>0.90 1702 629,941 2.7 37.5

Total 63,616 1,678,698

B. A. Collier et al.
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between 0.50 and 0.90 were more widely distributed across the

range although occupancy estimates declined in the northern

regions. Overall, the expected occurrence distribution at the

rangewide scale indicated significant variation in occurrence

probabilities dependent upon both spatial location and patch-

specific metrics (Fig. 2).

Model validation

Using survey data collected during 2003–2007 and 2010 in

woodland patches (n = 143), we classified patch detection/

non-detection for comparative purposes with our occupancy

predictions. We used a scoring classifier (Sing et al., 2005) to

visualize a ROC graph showing model prediction accuracy

versus false-positive rate and sensitivity versus specificity

(Fig. 3a,b). Our area under curve (AUC) estimate was high

(0.91), indicating our model predicted reality based on our

field survey data.

DISCUSSION

Population distribution is often limited by the amount of

appropriate habitat available (Hanski & Gilpin, 1991) and the

proximity or isolation of habitat patches (Shanahan &

Possingham, 2006). Identification of potential habitat distri-

bution and the ability to distinguish among patches of

varying occupancy probabilities are important for driving

conservation actions for species (Guisan & Thuiller, 2005).

Our general approach to study design and analysis is most

directly applicable to species where individuals are difficult to

follow, such as smaller-bodied animals that cannot be readily

sampled by telemetry and other marking methods (Fahrig,

2007:74–75).

We found that the majority (59%) of woodland patches

within the breeding range of the golden-cheeked warbler

were predicted to have £0.10 of being occupied. Thus, as it is

infeasible to maintain all current habitat for warblers in

Texas in perpetuity, our results can be used to (1) focus

resources on maintenance of those patches with higher

occupancy estimates that may be likely to harbour viable

local warbler populations (He & Gaston, 2000; Collier et al.,

2010) and (2) identify locations where habitat management

actions can assist in creating, maintaining or linking available

habitat.

Our results indicate that warbler occurrence declined from

south to north across the breeding range, which corresponded

with a decrease in the proportion of large patches from south

to north. The decrease in patch size was correlated with an

overall decrease in environmental conditions supporting large

patches with high canopy cover in the northernmost portion of

the species range, and additionally, greater residential and

< 0.1
0.1–0.2
0.2–0.3
0.3–0.4
0.4–0.5
0.5–0.6
0.6–0.7
0.7–0.8
0.8–0.9
> 0.9

Figure 2 Estimated patch-specific occupancy probability for the

golden-cheeked warbler in the 35-county breeding range in Texas,

USA.

(a)

(b)

Figure 3 Visualization of classification accuracy (area under

curve =0.91) for patch-scale surveys (n = 143) relative to predic-

tions from the semiparametric model showing (a) the ROC curve

and (b) model sensitivity–specificity trade-off.

Occupancy distribution of an American warbler
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commercial development in the south-east portion of the

range (Groce et al., 2010). Our data indicate that with an

overall shift to smaller and more fragmented patches within

the northern portions of the range, the probability of warbler

occurrence declines significantly, even for large patches of

woodland habitats.

Species distribution models incorporating imperfect detec-

tion and spatial relatedness are known to outperform standard

GLMs in predictive accuracy (Royle & Kéry, 2007). Using our

data as an example, consider two patches where one was in the

northern edge of the warblers range and the other was in the

south-western region of range. Both patches had similar patch

size (25.4 and 25.9 ha) and landscape composition (57.1 and

57.2) but differed significantly in predicted occupancy from

our model (northern patch occupancy, 0.10; south-western

patch occupancy, 0.72). Based on our values, we can infer

obvious differences in patch occupancy and hence use that

information for focusing conservation at the landscape scale.

However, if one were to use the same biological metrics in a

standard GLM, occurrence probabilities for both patches

would be 0.63, with a potential consequence of conservation

effort focused naı̈vely, and possibly ineffectively, on the

northern patch.

We adopted a set of biological covariates (patch size and

landscape composition) that previous research had indicated

was useful for predicting warbler occurrence at the patch scale

(Magness et al., 2006; Collier et al., 2010). Although we are

confident that the covariates we used were appropriate for

determining presence–absence across the range, it is likely that

additional environmental metrics, such as within-patch tree

communities, juniper density, relative age of oak–juniper

woodland, or other metrics may help refine occupancy in small

patches as well as provide information for better prediction of

warbler abundance and fecundity. However, model evaluation

indicated that our model’s predictive accuracy was more than

adequate overall; thus, we are comfortable with the environ-

mental metrics used. We assumed a fairly simple process for

species detection rates, assuming that detection was solely a

function of observation date (Collier et al., 2010). However, it

is plausible that more detailed determination of the detection

function could be accomplished via incorporation of addi-

tional variables for factors such as observers (e.g. differing

abilities), patch metrics or potential interactions between

spatial location and survey date. However, given the high

detection rates of warblers during our surveys, we thought that

additional metrics would add unnecessary complexity to our

modelling approach.

Our approach used variables relevant to a landscape scale,

which translated into a model that was insensitive to fine-scale

variability in habitat composition. While we acknowledge the

fact that site-specific (e.g. within patch) variation in habitat

characteristics can influence how warblers distribute them-

selves within patches of habitat (Ladd & Gass, 1999) and could

potentially affect between-patch distribution, we stress that our

work was not focused on evaluating mechanisms driving

within-patch differences in local selection (Manly et al., 2002).

Rather, our approach shows how robust models of species

distributions using coarse-scale metrics can be developed for

supporting conservation decisions at a scale not easily attain-

able with local-scale models.

Our application of a geoadditive semiparametric regression

occupancy model to golden-cheeked warbler breeding range

survey data provides a flexible framework for predicting

warbler distributions while addressing latent spatial variation

and issues associated with imperfect species detection. Thus,

our work builds upon others who have incorporated spatial

relationships into models (Elith et al., 2006), while accounting

for imperfect detection (Royle et al., 2007), and provides an

additional framework for model-based prediction of species

distributions. We applied our geoadditive model as a single-

season occupancy model, where occurrence does not change;

thus, our example provides a snapshot prediction of golden-

cheeked warbler patch occupancy distribution across the

species range. Our model can be useful for other questions

linking space to demography (Grosbois et al., 2009) as the

general structure allows for direct incorporation of spatial

relationships into future distribution models. Thus, our

approach could easily be applied to dynamic models to

address temporal variation in golden-cheeked warbler habitat

patch occupancy state (MacKenzie et al., 2002, Royle & Kéry,

2007), or given our model’s structure, it could easily be

modified to fit a variety of additional hierarchical models

focusing on golden-cheeked warbler abundance estimation

across the species breeding range (Royle, 2004; Kéry et al.,

2005; Royle et al., 2005; Thogmartin et al., 2006; Conroy et al.,

2008).

As reviewed by Mills (2007:265), one limitation of patch-

occupancy models is they ignore local population dynamics

largely because they are data-intensive. Although we acknowl-

edge this limitation, a core issue of conservation biology is

the distribution of individuals through space, with a focus on

the size of potential habitat patches and their proximity to

one another. Whether or not a species is structured as a

metapopulation, knowledge of how habitat is occupied

through space allows predictions to be made on colonization

and extinction probabilities. Thus, our broad-scale approach

serves as a template for addressing modelling of colonization

and extinction based on the occupancy of habitat, hence a

more thorough understanding of population viability. For

example, we are using our resulting model to develop more

regionally focused studies of patch abundance, productivity

and dispersal. If properly designed, regionally focused studies

can then be expanded more broadly to the population of

interest.

In summary, our study provides an approach for developing

a broad-scale assessment of the potential distribution of a

species. By using detection/non-detection surveys and remotely

sensed habitat metrics within a spatially explicit modelling

context, we identified a spatial gradient of occurrence for

golden-cheeked warblers as well as relationships between two

measurable landscape characteristics that can be used for

further conservation planning. As opposed to methods
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typically used to predict species distributions where habitats

are predicted to be either usable or unusable for a species (e.g.

Elith et al., 2006), our approach allows for a probabilistic

prediction of the likelihood that a patch would harbour the

target species. Our model was accurate when evaluated using

an independent dataset, suggesting that our predictions were

both robust and applicable rangewide.
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