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ABSTRACT I review concepts of basic graph design and outline general guidance for basic preparation and presentation of data. I

comment on the continued use of convenient summary graphics found in our literature where data are often misrepresented and review

potential remedies that will improve data description and graphical efficiency for the most frequently used graph types in wildlife data reporting.

I suggest that graphics should play a larger role in data description and analysis and less in summarizing study results. ( JOURNAL OF

WILDLIFE MANAGEMENT 72(5):1272–1278; 2008)
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Since Playfair’s (1786, 1801) pioneering work in graphing,
groups ranging from academicians and government to
businesses and media have relied on graphs to analyze and
communicate quantitative information (Cleveland 1984a,
Larkin and Simon 1987, Tufte 2001). Work by Chambers
et al. (1983), Tufte (1983, 2001), Tukey (1977), and
Cleveland (1993, 1994) highlighted graphs as a statistical
tool for exploring data patterns, discerning quantitative
relationships between pattern and process, and confirming
or disproving hypotheses (Chambers et al. 1983, Cleveland
1984a). Use of graphics should be innate to scientists;
organize quantitative information in such a way that
patterns and structures within the data can be shown and
evaluated (Cleveland and McGill 1984).

Ecological research is descriptive; all that varies is the
choice of quantitative methods (e.g., summary statistics,
hypothesis tests, estimation procedures, predictive model-
ing) used to describe data. Over time, ecological studies have
undergone various methodological shifts as ecologists have
delved deeper into application of statistical methods to
ecological data. However, graphical methods for analyzing
and communicating data are still underdeveloped and
underutilized by many ecologists. Use of graphics is higher
in natural sciences than other fields primarily due to natural
sciences having a greater quantity of observational data to
present (Cleveland 1984a, b). Thus, ecologists should strive
to display data efficiently and accurately using the wide
range of graphical options available to researchers (Cleve-
land 1993, 1994; Maindonald and Braun 2003).

As ecologists, we use graphs to communicate or summa-
rize information or for data analysis (Fienberg 1979).
General suggestions for presenting data covering topics
such as use of P values, null hypothesis testing, and model
selection in ecological studies are well addressed (Cherry
1998, Johnson 1999, Anderson et al. 2001), but little
attention has been focused on graphical use, as noted .3
decades ago by Anscombe (1973). There are many potential
approaches to presenting data dependent upon the context
(presentation, peer-reviewed article) and audience (scien-

tists, agencies, public). However, my comments should be
consistent with graphical design for a diverse array of
audiences. I will outline a few general principles of graphic
design based on my review of the published literature. Next,
I will suggest how graphics can be used to better understand
the nature of data and provide comparisons and suggestions
on those graphical methods and formats which are most
appropriate for certain data types. Within this context, I will
discuss several common pitfalls and redundancies in basic
graph use.

CONCEPTS OF GRAPH
CONSTRUCTION

Currently, there are only general standards for graph
integrity (Cox 1978, Fienberg 1979, Chambers et al.
1983, Maindonald and Braun 2003, Tufte 2001, Murrell
2006) and no basic theory for how graphs are created for a
specific data type (Fienberg 1979; Cleveland and McGill
1984, 1985). As a result, graph creation is largely an
unscientific process, based on intuition, rules of thumb, best
guesses, colleague suggestions, and hand-me-down ap-
proaches from faculty to students (Cleveland and McGill
1984). Many authors have commented on what constitutes
good graph design (MacDonald-Ross 1977; Fienberg 1979;
Cleveland and McGill 1984, 1985; Tufte 2001) and most
indicate that theory for graphic design is limited (Tukey
1977, Cleveland and McGill 1984). Tufte (2001:13)
suggested that ‘‘excellence in statistical graphics consists of
complex ideas communicated with clarity, precision, and
efficiency.’’ Good graphs should 1) illustrate the data, 2)
induce the viewer to think about the substance rather than
methodology, design, or technology of graphic construction,
3) present large datasets coherently and reveal data at several
levels, 4) serve a clear purpose (e.g., description, tabulation),
and 5) be closely related to the statistical and verbal
descriptions of the data (Tufte 2001).

PERILS OF GRAPHING NON-DATA

Above all, graphs should clearly and concisely show data.
Graphs should draw the reader to the substance of data and1 E-mail: bret@tamu.edu
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explicitly represent those data. Non-data, or information
contained within a graph that does not convey information,
has become a serious problem in ecological journals due to
the prevalence of graph options provided in computer
programs. Availability of easily constructed graphs in such
programs has allowed ecologists to replace graph substance
with graph convenience.

For example, many programs provide graph options

distracting from data, hence reducing graph effectiveness.

The most common forms of non-data used in ecological

graphics are arbitrary gridlines, false dimensions, and

unordered moiré effects (superimposing of a repetitive

design to produce a pattern). Gridlines (or grids) are

common in graphs, because we plot response along the y-

axis with our interest being how responses change over the

predictor variable on the x-axis. Then, grids are drawn

perpendicular to the y-axis to relate the various y-axis values

(Fig. 1). Given the level of precision and resolution shown

within most time-series plots in ecological studies (e.g., Fig.

2; Moynahan et al. 2007), grids are likely unnecessary.

Another common issue in ecological graphs is use of false

dimensions. Whether used as a single (Fig. 3a) or stacked

depth figure (Fig. 3b), extra dimensions are inappropriate

because they 1) infer an area and volume measurement in

the data when there is none, 2) tend to conceal data (Fig.

3b), 3) and increase the amount of data-ink (graph sections

that do not contain data; Tufte 2001). In addition,

examination of false dimensional graphs will usually show

�2 altitude measurements for the data value of interest; one

Figure 1. XY plot with gridlines. The data represent observed counts of a
hypothetical population over a 7-year period with gridlines incorporated.

Figure 2. Example XY plot with gridlines that convey no information
relevant to the data presented (from Moynahan et al. 2007).

Figure 3. Three-dimensional graphs. The data are the percentage of each
sample. (a) Depicts a use of a third dimension in a standard bar plot for
comparisons between samples. (b) Depicts use of a third dimension in a
stacked depth bar plot for comparisons between samples.
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for the top-front of each bar and one for the top-back of
each bar (Fig. 3a). Microsoft Excel (under Office Profes-
sional 2003, Microsoft, Redmond, WA, USA) provided
�15 different types of graphs that incorporate a statistically
uninterpretable false dimension, nearly an equal number to
the options provided by Excel that do not incorporate false
dimensions.

Moiré effects are the superimposing of a repetitive design
to produce a pattern specific to one category (e.g., age class)
causing that category to be distinctive from other categories
within the same graph (Fig. 4). Whether moiré effects
produce better graphs is unknown, because use is undis-
ciplined, leading to increased chance of illusions of
perception due to width or shading (Bertin 1983). Use of
moiré effects in ecological literature is likely tied to high use
of moiré effects in statistical texts, with 12% to 68% of
graphics using moiré effects in those books reviewed by
Tufte (2001), and the wealth of potential moiré effects
(colors, lines, dots, etc.) provided in basic spreadsheet
programs. Thus, while common in ecological literature,
moiré effects are usually unnecessary as use of other graph
designs negate the need for pattern-based classification.

SIMPLE GRAPH USE AND MISUSE

Early graphical controversies centered on the debate
regarding the application of single parameter pie graphs
and bar plots to data (Eells 1926, Croxton 1927, Croxton
and Stryker 1927, Von Hurn 1927, Kruskal 1982). The
current consensus is that pie graphs should not be used to
describe data because 1) discerning the exact magnitude of
the pie slices is difficult, 2) the assumption that the center
angles are proportional to the frequency represented is
difficult to justify, 3) comparisons between and within pies

are ineffective because it is difficult to judge relative slice size

(angle judgments), and 4) area and diameter of the

commonly used pie graphs are usually shown as equal, even

when sample sizes vary, thus pie size (hence slice size) is not

Figure 4. Moiré effects. The data are the percentage of fox mortalities
attributed to 4 possible categories (from Gosselink et al. 2007). The moiré
effects complicate illustration of data within the graph and can influence
perception of the graph. In addition, this graph is a divided bar chart, thus
the reader must interpret not only moiré effects but must also make length-
area measurements without a common axis.

Figure 5. Pie graph. The data are the percentages of each of 2 samples. A
pie chart should not be used to represent scientific data because discerning
pie slice size is difficult due to angle judgments. If the percentages for each
slice are shown in the graph, it negates the need for the pie graph.
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proportional to sample size (Fig. 5; although see MacDon-

ald-Ross 1977 for a counter-view). Replacing angle judg-

ments with position judgments would be more conducive to

scientific understanding, either a simple bar graph, dot plot

(see below), or a table are better presentation options than

pie charts (Cleveland and McGill 1983).

Bar graphs are the most frequently used graph in

ecological literature and thus are most prone to poor usage.
Bar graphs should be used to provide absolute or relative
frequencies (Fig. 6; Fenolio et al. 2006), never point
estimates or data means. For example, Figure 7 is intended
to represent 6 means and associated confidence interval
bounds. However, by using a bar graph, Figure 7 now
incorporates use of the bars and shading unrelated to the
data (estimated mean), distracting from the information
(point estimate) of interest. Also, note that in Figure 7 only
certain upper limits of the standard error bars are in view
due to shading, a common occurrence that should be
discouraged.

Bar graphs such as Figure 7 often have redundant data-ink
(Tufte 2001). Graph 7 locates the point estimate of interest
in �4 unambiguous ways: height of the left and right lines,
height of the shading, and position of the horizontal line
atop the bar; a fifth way could potentially be the midpoint
between the 2 standard error bounds (Tufte 2001). Delete
any 4 of these and you are still left with an exact
measurement of altitude for these data. In this case, I
suggest a different style graph would be more useful if there
was requisite data (�20 data values; Fig. 8; Collier et al.
2007) or in this specific situation conversion to text would

Figure 6. Bar graph. Raw counts of cave salamanders captured over 27
months in Oklahoma, USA (from Fenolio et al. 2006).

Figure 7. Bar graph. The data are hypothetical means and associated
confidence intervals. A bar graph should never be used to represent point
estimates because the bar sizes encode meaningless numbers, hide
information such as confidence interval lower bounds, and provide
redundant measurements of data altitude.

Figure 8. Detection probabilities for thermal imagers (TI) and spotlight
(SL) white-tailed deer surveys conducted at Brosnan Forest, South
Carolina, USA, during August 2005 (from Collier et al. 2007).
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also be supported as we are providing 6 data points, far too
few for a graph.

The legend for graphs such as Figure 6 often identifies this
graph as a histogram. Contrary to popular use, mathematical
and logical definitions of histograms and bar graphs are
different and bar graphs are inappropriately labeled histo-
grams in many computer programs and ecological journals.
Histograms provide probability densities which integrate to
one; thus bar height is frequency divided by interval width
(Fig. 9, Chambers et al. 1983, Venables and Ripley 2002).
In bar graphs (Fig. 6), bar heights are not related to interval
width (bin width) or data density. Hence, bar width is
meaningless for bar graphs. Histogram structure is in part
dependent upon not only data density, but in the width
chosen for the data bins. A good way to show the actual data
density when plotting a histogram is using a rug, or a graph
that shows data density directly below the histogram (Fig.
9). Additionally, sometimes plotting a density function
rather than a standard histogram is useful (Fig. 9).

Divided bar charts also are commonly used to show
relative system measurements (Fig. 4). Divided bar charts
require the reader to interpret both position and length
(such as pie graphs required judgments of angle; Cleveland
1984b, Cleveland and McGill 1985). Divided bar charts can
be used to compare total area-length of relative position
along one scale (Cleveland 1984). However, fractional areas
of divided bar charts can only be compared using area-
length judgments because there is no common baseline (e.g.,
common axis) for comparison of the fractional area being
illustrated (Cleveland 1984b, Cleveland and McGill 1985).
For example, consider Figure 4 (Gosselink et al. 2007).
Based on the divided bar chart and moiré effects, it is
difficult to determine which categories are variable across
the dataset as there is no common baseline on which to
judge each provided measure. Errors in judgment of area-
length questions were between 40% and 250% larger when
a common scale was not available (Cleveland and McGill
1984). Thus, consistently overestimating fractional areas in a
divided bar chart can change data perceptions by readers

(Cleveland and McGill 1984). Also, because divided bar
charts suffer from no implicit natural ordering of categories,
moiré effects are a necessity that adds additional complexity
and unnecessary information.

One approach that lends itself well as a replacement for pie
graphs, bar graphs, and divided bar charts, but that is rarely
used, is the dot chart (Cleveland 1984b). Cleveland
(1984b:274) suggests that ‘‘A reasonable principle for the
design of graphics is to make the graphical elements
representing the data as nearly equal as possible; this giving
equal visual emphasis to all data values.’’ Both Cleveland
(1984b) and Chambers et al. (1983) have recommended that
use of dot charts replace the current usage of pie graphs,
divided bar charts, and in most cases, bar plots. As an
example, I took the data used to construct Figures 3a and
3b, and reformatted these data as a dot chart (Fig. 10).
Notice how use of a grouped dot chart simplifies
interpretation of these data because it 1) provides the data
for comparison on a common axis, 2) provides the data in a
simple format, 3) reduces the need for area-length judg-
ments, and 4) reduces the need to decipher moiré effects. In
Figure 10, although I used letters to represent different
point estimates to increase interpretability of both location
and comparisons between and among groups for the sake of

Figure 9. Histogram. The data are a simulated normal distribution (l¼0.4,
r2¼ 0.8) with equal bin widths. The data density is represented by the rug
under the x-axis.

Figure 10. Dot chart. The data are the percentages of the example
population for each of 3 samples. In this case, comparisons between and
among samples is simplified because the reader has a common axis and does
not have to make length-area measurements.
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this manuscript, any unique symbol or shape (e.g., point

estimates with confidence intervals) would suffice as long as
it was detailed in the graph legend.

SUMMARY

Ecologists have spent considerable time and effort to
determine appropriate computational method(s) for analysis

of ecological data (Williams et al. 2002) but in the interim
have sacrificed substance for convenience when constructing
graphs to describe ecological data. Our use of graphs in

ecology should focus on organizing quantitative information
such that patterns and structures within the data can be
deciphered (Chambers et al. 1983; Cleveland 1984b; Wainer

and Velleman 2001; Tufte 1983, 2001). However, we seem
to use graphs to highlight simple results that we suggest
merit notice.

Highlighting important results is commendable; however,

authors should keep in mind the nature of graphs. Few
statistical tools are as powerful as the graph and properly
constructed graphics can convey a wealth of information

regarding the structure and relationships of data (Chambers
et al. 1983, Tufte 2001, Murrell 2006). Graphs should
highlight those data that are substantial and reduce

information that is not germane. Thus, when constructing
basic graphs, I implore scientists to think about presentation
of data as rote usage can provide misleading results. In my

opinion, the most profound issues of graph creation are tied
to the use of spreadsheet or statistical programs that provide
‘‘stock’’ graphical depictions of results that are used as
defaults for multiple different data types. These programs

may provide a wealth of graphical options; however, few of
these meet any of those criteria suggested for good graphs by
Tufte (1983, 2001) or Chambers et al. (1983).

I have highlighted and summarized certain aspects of the
most frequently used basic graphs in wildlife ecology that I
suggest need attention. However, there are many other areas
I could have discussed (e.g., legends, graph borders, color,

shading) and a host of useful graph types I did not outline
(lattice graphs, mosaic graphs, odds ratio plots, 3-dimen-
sional scatter graphs). Thus, my thoughts are obviously not

comprehensive with respect to the field of graph construc-
tion but rather an initial discussion on basic graph
development in the hope that future evaluation and

discussion on graph use in ecological sciences will occur.
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